Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliind2 Structured version   Visualization version   Unicode version

Theorem eliind2 39313
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
eliind2.1  |-  F/ x ph
eliind2.2  |-  ( ph  ->  A  e.  V )
eliind2.3  |-  ( (
ph  /\  x  e.  B )  ->  A  e.  C )
Assertion
Ref Expression
eliind2  |-  ( ph  ->  A  e.  |^|_ x  e.  B  C )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    C( x)    V( x)

Proof of Theorem eliind2
StepHypRef Expression
1 eliind2.1 . . 3  |-  F/ x ph
2 eliind2.3 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  A  e.  C )
32ex 450 . . 3  |-  ( ph  ->  ( x  e.  B  ->  A  e.  C ) )
41, 3ralrimi 2957 . 2  |-  ( ph  ->  A. x  e.  B  A  e.  C )
5 eliind2.2 . . 3  |-  ( ph  ->  A  e.  V )
6 eliin 4525 . . 3  |-  ( A  e.  V  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
75, 6syl 17 . 2  |-  ( ph  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
84, 7mpbird 247 1  |-  ( ph  ->  A  e.  |^|_ x  e.  B  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   F/wnf 1708    e. wcel 1990   A.wral 2912   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator