Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssiin Structured version   Visualization version   Unicode version

Theorem iinssiin 39312
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinssiin.1  |-  F/ x ph
iinssiin.2  |-  ( (
ph  /\  x  e.  A )  ->  B  C_  C )
Assertion
Ref Expression
iinssiin  |-  ( ph  -> 
|^|_ x  e.  A  B  C_  |^|_ x  e.  A  C )

Proof of Theorem iinssiin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iinssiin.1 . . . . . 6  |-  F/ x ph
2 nfcv 2764 . . . . . . 7  |-  F/_ x
y
3 nfii1 4551 . . . . . . 7  |-  F/_ x |^|_ x  e.  A  B
42, 3nfel 2777 . . . . . 6  |-  F/ x  y  e.  |^|_ x  e.  A  B
51, 4nfan 1828 . . . . 5  |-  F/ x
( ph  /\  y  e.  |^|_ x  e.  A  B )
6 iinssiin.2 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  C_  C )
76adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  |^|_ x  e.  A  B )  /\  x  e.  A )  ->  B  C_  C )
8 eliinid 39294 . . . . . . . 8  |-  ( ( y  e.  |^|_ x  e.  A  B  /\  x  e.  A )  ->  y  e.  B )
98adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  |^|_ x  e.  A  B )  /\  x  e.  A )  ->  y  e.  B )
107, 9sseldd 3604 . . . . . 6  |-  ( ( ( ph  /\  y  e.  |^|_ x  e.  A  B )  /\  x  e.  A )  ->  y  e.  C )
1110ex 450 . . . . 5  |-  ( (
ph  /\  y  e.  |^|_
x  e.  A  B
)  ->  ( x  e.  A  ->  y  e.  C ) )
125, 11ralrimi 2957 . . . 4  |-  ( (
ph  /\  y  e.  |^|_
x  e.  A  B
)  ->  A. x  e.  A  y  e.  C )
13 vex 3203 . . . . 5  |-  y  e. 
_V
14 eliin 4525 . . . . 5  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
1513, 14ax-mp 5 . . . 4  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
1612, 15sylibr 224 . . 3  |-  ( (
ph  /\  y  e.  |^|_
x  e.  A  B
)  ->  y  e.  |^|_
x  e.  A  C
)
1716ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  |^|_  x  e.  A  B y  e.  |^|_ x  e.  A  C )
18 dfss3 3592 . 2  |-  ( |^|_ x  e.  A  B  C_  |^|_
x  e.  A  C  <->  A. y  e.  |^|_  x  e.  A  B y  e. 
|^|_ x  e.  A  C )
1917, 18sylibr 224 1  |-  ( ph  -> 
|^|_ x  e.  A  B  C_  |^|_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   F/wnf 1708    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator