| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elim2ifim | Structured version Visualization version Unicode version | ||
| Description: Elimination of two conditional operators for an implication. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| elim2if.1 |
|
| elim2if.2 |
|
| elim2if.3 |
|
| elim2ifim.1 |
|
| elim2ifim.2 |
|
| elim2ifim.3 |
|
| Ref | Expression |
|---|---|
| elim2ifim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 431 |
. . 3
| |
| 2 | elim2ifim.1 |
. . . . 5
| |
| 3 | 2 | ancli 574 |
. . . 4
|
| 4 | pm4.42 1004 |
. . . . . 6
| |
| 5 | elim2ifim.2 |
. . . . . . . . . 10
| |
| 6 | 5 | ex 450 |
. . . . . . . . 9
|
| 7 | 6 | ancld 576 |
. . . . . . . 8
|
| 8 | 7 | imp 445 |
. . . . . . 7
|
| 9 | elim2ifim.3 |
. . . . . . . . . 10
| |
| 10 | 9 | ex 450 |
. . . . . . . . 9
|
| 11 | 10 | ancld 576 |
. . . . . . . 8
|
| 12 | 11 | imp 445 |
. . . . . . 7
|
| 13 | 8, 12 | orim12i 538 |
. . . . . 6
|
| 14 | 4, 13 | sylbi 207 |
. . . . 5
|
| 15 | 14 | ancli 574 |
. . . 4
|
| 16 | 3, 15 | orim12i 538 |
. . 3
|
| 17 | 1, 16 | ax-mp 5 |
. 2
|
| 18 | elim2if.1 |
. . 3
| |
| 19 | elim2if.2 |
. . 3
| |
| 20 | elim2if.3 |
. . 3
| |
| 21 | 18, 19, 20 | elim2if 29363 |
. 2
|
| 22 | 17, 21 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |