MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim12i Structured version   Visualization version   Unicode version

Theorem orim12i 538
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.)
Hypotheses
Ref Expression
orim12i.1  |-  ( ph  ->  ps )
orim12i.2  |-  ( ch 
->  th )
Assertion
Ref Expression
orim12i  |-  ( (
ph  \/  ch )  ->  ( ps  \/  th ) )

Proof of Theorem orim12i
StepHypRef Expression
1 orim12i.1 . . 3  |-  ( ph  ->  ps )
21orcd 407 . 2  |-  ( ph  ->  ( ps  \/  th ) )
3 orim12i.2 . . 3  |-  ( ch 
->  th )
43olcd 408 . 2  |-  ( ch 
->  ( ps  \/  th ) )
52, 4jaoi 394 1  |-  ( (
ph  \/  ch )  ->  ( ps  \/  th ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  orim1i  539  orim2i  540  prlem2  1006  ifpor  1021  eueq3  3381  pwssun  5020  xpima  5576  funcnvuni  7119  2oconcl  7583  fin23lem23  9148  fin23lem19  9158  fin1a2lem13  9234  fin1a2s  9236  nn0ge0  11318  elfzlmr  12582  hash2pwpr  13258  trclfvg  13756  mreexexdOLD  16309  xpcbas  16818  odcl  17955  gexcl  17995  ang180lem4  24542  elim2ifim  29364  locfinref  29908  volmeas  30294  nepss  31599  funpsstri  31663  fvresval  31665  dvasin  33496  dvacos  33497  relexpxpmin  38009  clsk1indlem3  38341  elsprel  41725  resolution  42545
  Copyright terms: Public domain W3C validator