| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimhyp4v | Structured version Visualization version Unicode version | ||
| Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth 4139). (Contributed by NM, 16-Apr-2005.) |
| Ref | Expression |
|---|---|
| elimhyp4v.1 |
|
| elimhyp4v.2 |
|
| elimhyp4v.3 |
|
| elimhyp4v.4 |
|
| elimhyp4v.5 |
|
| elimhyp4v.6 |
|
| elimhyp4v.7 |
|
| elimhyp4v.8 |
|
| elimhyp4v.9 |
|
| Ref | Expression |
|---|---|
| elimhyp4v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4092 |
. . . . . . 7
| |
| 2 | 1 | eqcomd 2628 |
. . . . . 6
|
| 3 | elimhyp4v.1 |
. . . . . 6
| |
| 4 | 2, 3 | syl 17 |
. . . . 5
|
| 5 | iftrue 4092 |
. . . . . . 7
| |
| 6 | 5 | eqcomd 2628 |
. . . . . 6
|
| 7 | elimhyp4v.2 |
. . . . . 6
| |
| 8 | 6, 7 | syl 17 |
. . . . 5
|
| 9 | 4, 8 | bitrd 268 |
. . . 4
|
| 10 | iftrue 4092 |
. . . . . 6
| |
| 11 | 10 | eqcomd 2628 |
. . . . 5
|
| 12 | elimhyp4v.3 |
. . . . 5
| |
| 13 | 11, 12 | syl 17 |
. . . 4
|
| 14 | iftrue 4092 |
. . . . . 6
| |
| 15 | 14 | eqcomd 2628 |
. . . . 5
|
| 16 | elimhyp4v.4 |
. . . . 5
| |
| 17 | 15, 16 | syl 17 |
. . . 4
|
| 18 | 9, 13, 17 | 3bitrd 294 |
. . 3
|
| 19 | 18 | ibi 256 |
. 2
|
| 20 | elimhyp4v.9 |
. . 3
| |
| 21 | iffalse 4095 |
. . . . . . 7
| |
| 22 | 21 | eqcomd 2628 |
. . . . . 6
|
| 23 | elimhyp4v.5 |
. . . . . 6
| |
| 24 | 22, 23 | syl 17 |
. . . . 5
|
| 25 | iffalse 4095 |
. . . . . . 7
| |
| 26 | 25 | eqcomd 2628 |
. . . . . 6
|
| 27 | elimhyp4v.6 |
. . . . . 6
| |
| 28 | 26, 27 | syl 17 |
. . . . 5
|
| 29 | 24, 28 | bitrd 268 |
. . . 4
|
| 30 | iffalse 4095 |
. . . . . 6
| |
| 31 | 30 | eqcomd 2628 |
. . . . 5
|
| 32 | elimhyp4v.7 |
. . . . 5
| |
| 33 | 31, 32 | syl 17 |
. . . 4
|
| 34 | iffalse 4095 |
. . . . . 6
| |
| 35 | 34 | eqcomd 2628 |
. . . . 5
|
| 36 | elimhyp4v.8 |
. . . . 5
| |
| 37 | 35, 36 | syl 17 |
. . . 4
|
| 38 | 29, 33, 37 | 3bitrd 294 |
. . 3
|
| 39 | 20, 38 | mpbii 223 |
. 2
|
| 40 | 19, 39 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |