MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinsn Structured version   Visualization version   Unicode version

Theorem elinsn 4245
Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021.)
Assertion
Ref Expression
elinsn  |-  ( ( A  e.  V  /\  ( B  i^i  C )  =  { A }
)  ->  ( A  e.  B  /\  A  e.  C ) )

Proof of Theorem elinsn
StepHypRef Expression
1 snidg 4206 . 2  |-  ( A  e.  V  ->  A  e.  { A } )
2 eleq2 2690 . . 3  |-  ( ( B  i^i  C )  =  { A }  ->  ( A  e.  ( B  i^i  C )  <-> 
A  e.  { A } ) )
3 elin 3796 . . . 4  |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
43biimpi 206 . . 3  |-  ( A  e.  ( B  i^i  C )  ->  ( A  e.  B  /\  A  e.  C ) )
52, 4syl6bir 244 . 2  |-  ( ( B  i^i  C )  =  { A }  ->  ( A  e.  { A }  ->  ( A  e.  B  /\  A  e.  C ) ) )
61, 5mpan9 486 1  |-  ( ( A  e.  V  /\  ( B  i^i  C )  =  { A }
)  ->  ( A  e.  B  /\  A  e.  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-sn 4178
This theorem is referenced by:  frgrncvvdeqlem3  27165  frgrncvvdeqlem6  27168
  Copyright terms: Public domain W3C validator