Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintabg Structured version   Visualization version   Unicode version

Theorem elintabg 37880
Description: Two ways of saying a set is an element of the intersection of a class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
elintabg  |-  ( A  e.  V  ->  ( A  e.  |^| { x  |  ph }  <->  A. x
( ph  ->  A  e.  x ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem elintabg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elintg 4483 . 2  |-  ( A  e.  V  ->  ( A  e.  |^| { x  |  ph }  <->  A. y  e.  { x  |  ph } A  e.  y
) )
2 eleq2 2690 . . 3  |-  ( y  =  x  ->  ( A  e.  y  <->  A  e.  x ) )
32ralab2 3371 . 2  |-  ( A. y  e.  { x  |  ph } A  e.  y  <->  A. x ( ph  ->  A  e.  x ) )
41, 3syl6bb 276 1  |-  ( A  e.  V  ->  ( A  e.  |^| { x  |  ph }  <->  A. x
( ph  ->  A  e.  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    e. wcel 1990   {cab 2608   A.wral 2912   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-int 4476
This theorem is referenced by:  elinintab  37881
  Copyright terms: Public domain W3C validator