| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rababg | Structured version Visualization version Unicode version | ||
| Description: Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.) |
| Ref | Expression |
|---|---|
| rababg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrb 573 |
. . 3
| |
| 2 | 1 | albii 1747 |
. 2
|
| 3 | nfv 1843 |
. . 3
| |
| 4 | nfsab1 2612 |
. . . 4
| |
| 5 | nfrab1 3122 |
. . . . 5
| |
| 6 | 5 | nfcri 2758 |
. . . 4
|
| 7 | 4, 6 | nfim 1825 |
. . 3
|
| 8 | abid 2610 |
. . . . 5
| |
| 9 | eleq1 2689 |
. . . . 5
| |
| 10 | 8, 9 | syl5bbr 274 |
. . . 4
|
| 11 | rabid 3116 |
. . . . 5
| |
| 12 | eleq1 2689 |
. . . . 5
| |
| 13 | 11, 12 | syl5bbr 274 |
. . . 4
|
| 14 | 10, 13 | imbi12d 334 |
. . 3
|
| 15 | 3, 7, 14 | cbval 2271 |
. 2
|
| 16 | eqss 3618 |
. . 3
| |
| 17 | rabssab 3690 |
. . . 4
| |
| 18 | 17 | biantrur 527 |
. . 3
|
| 19 | dfss2 3591 |
. . 3
| |
| 20 | 16, 18, 19 | 3bitr2ri 289 |
. 2
|
| 21 | 2, 15, 20 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-in 3581 df-ss 3588 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |