| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elintd | Structured version Visualization version Unicode version | ||
| Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| elintd.1 |
|
| elintd.2 |
|
| elintd.3 |
|
| Ref | Expression |
|---|---|
| elintd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintd.1 |
. . 3
| |
| 2 | elintd.3 |
. . . 4
| |
| 3 | 2 | ex 450 |
. . 3
|
| 4 | 1, 3 | ralrimi 2957 |
. 2
|
| 5 | elintd.2 |
. . 3
| |
| 6 | elintg 4483 |
. . 3
| |
| 7 | 5, 6 | syl 17 |
. 2
|
| 8 | 4, 7 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-int 4476 |
| This theorem is referenced by: ssuniint 39250 elintdv 39251 |
| Copyright terms: Public domain | W3C validator |