![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqneltri | Structured version Visualization version Unicode version |
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqneltri.1 |
![]() ![]() ![]() ![]() |
eqneltri.2 |
![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqneltri |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltri.2 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | eqneltri.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eleq1i 2692 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbir 313 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: eliuniincex 39292 eliincex 39293 salgencntex 40561 |
Copyright terms: Public domain | W3C validator |