MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintgOLD Structured version   Visualization version   Unicode version

Theorem elintgOLD 4484
Description: Obsolete proof of elintg 4483 as of 26-Jul-2021. (Contributed by NM, 20-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elintgOLD  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elintgOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . 2  |-  ( y  =  A  ->  (
y  e.  |^| B  <->  A  e.  |^| B ) )
2 eleq1 2689 . . 3  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32ralbidv 2986 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  y  e.  x  <->  A. x  e.  B  A  e.  x ) )
4 vex 3203 . . 3  |-  y  e. 
_V
54elint2 4482 . 2  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
61, 3, 5vtoclbg 3267 1  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-int 4476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator