MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elint2 Structured version   Visualization version   Unicode version

Theorem elint2 4482
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
elint2.1  |-  A  e. 
_V
Assertion
Ref Expression
elint2  |-  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x )
Distinct variable groups:    x, A    x, B

Proof of Theorem elint2
StepHypRef Expression
1 elint2.1 . . 3  |-  A  e. 
_V
21elint 4481 . 2  |-  ( A  e.  |^| B  <->  A. x
( x  e.  B  ->  A  e.  x ) )
3 df-ral 2917 . 2  |-  ( A. x  e.  B  A  e.  x  <->  A. x ( x  e.  B  ->  A  e.  x ) )
42, 3bitr4i 267 1  |-  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    e. wcel 1990   A.wral 2912   _Vcvv 3200   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-int 4476
This theorem is referenced by:  elintgOLD  4484  int0  4490  ssint  4493  intssuni  4499  iinuni  4609  trint  4768  trintssOLD  4770  onint  6995  intwun  9557  inttsk  9596  intgru  9636  subgint  17618  subrgint  18802  lssintcl  18964  toponmre  20897  alexsubALTlem3  21853  shintcli  28188  chintcli  28190  fin2so  33396  intidl  33828  mzpincl  37297  elimaint  37940  elintima  37945  intsal  40548  salgencntex  40561
  Copyright terms: Public domain W3C validator