MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpr2elpr Structured version   Visualization version   Unicode version

Theorem elpr2elpr 4398
Description: For an element  A of an unordered pair which is a subset of a given set  V, there is another (maybe the same) element  b of the given set  V being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
elpr2elpr  |-  ( ( X  e.  V  /\  Y  e.  V  /\  A  e.  { X ,  Y } )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b } )
Distinct variable groups:    A, b    V, b    X, b    Y, b

Proof of Theorem elpr2elpr
StepHypRef Expression
1 simprr 796 . . . . . 6  |-  ( ( A  =  X  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  Y  e.  V )
2 preq2 4269 . . . . . . . 8  |-  ( b  =  Y  ->  { A ,  b }  =  { A ,  Y }
)
32eqeq2d 2632 . . . . . . 7  |-  ( b  =  Y  ->  ( { X ,  Y }  =  { A ,  b }  <->  { X ,  Y }  =  { A ,  Y } ) )
43adantl 482 . . . . . 6  |-  ( ( ( A  =  X  /\  ( X  e.  V  /\  Y  e.  V ) )  /\  b  =  Y )  ->  ( { X ,  Y }  =  { A ,  b }  <->  { X ,  Y }  =  { A ,  Y } ) )
5 preq1 4268 . . . . . . . 8  |-  ( X  =  A  ->  { X ,  Y }  =  { A ,  Y }
)
65eqcoms 2630 . . . . . . 7  |-  ( A  =  X  ->  { X ,  Y }  =  { A ,  Y }
)
76adantr 481 . . . . . 6  |-  ( ( A  =  X  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  { X ,  Y }  =  { A ,  Y }
)
81, 4, 7rspcedvd 3317 . . . . 5  |-  ( ( A  =  X  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
)
98ex 450 . . . 4  |-  ( A  =  X  ->  (
( X  e.  V  /\  Y  e.  V
)  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
) )
10 simprl 794 . . . . . 6  |-  ( ( A  =  Y  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  X  e.  V )
11 preq2 4269 . . . . . . . 8  |-  ( b  =  X  ->  { A ,  b }  =  { A ,  X }
)
1211eqeq2d 2632 . . . . . . 7  |-  ( b  =  X  ->  ( { X ,  Y }  =  { A ,  b }  <->  { X ,  Y }  =  { A ,  X } ) )
1312adantl 482 . . . . . 6  |-  ( ( ( A  =  Y  /\  ( X  e.  V  /\  Y  e.  V ) )  /\  b  =  X )  ->  ( { X ,  Y }  =  { A ,  b }  <->  { X ,  Y }  =  { A ,  X } ) )
14 preq2 4269 . . . . . . . . 9  |-  ( Y  =  A  ->  { X ,  Y }  =  { X ,  A }
)
1514eqcoms 2630 . . . . . . . 8  |-  ( A  =  Y  ->  { X ,  Y }  =  { X ,  A }
)
16 prcom 4267 . . . . . . . 8  |-  { X ,  A }  =  { A ,  X }
1715, 16syl6eq 2672 . . . . . . 7  |-  ( A  =  Y  ->  { X ,  Y }  =  { A ,  X }
)
1817adantr 481 . . . . . 6  |-  ( ( A  =  Y  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  { X ,  Y }  =  { A ,  X }
)
1910, 13, 18rspcedvd 3317 . . . . 5  |-  ( ( A  =  Y  /\  ( X  e.  V  /\  Y  e.  V
) )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
)
2019ex 450 . . . 4  |-  ( A  =  Y  ->  (
( X  e.  V  /\  Y  e.  V
)  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
) )
219, 20jaoi 394 . . 3  |-  ( ( A  =  X  \/  A  =  Y )  ->  ( ( X  e.  V  /\  Y  e.  V )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b }
) )
22 elpri 4197 . . 3  |-  ( A  e.  { X ,  Y }  ->  ( A  =  X  \/  A  =  Y ) )
2321, 22syl11 33 . 2  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( A  e.  { X ,  Y }  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b } ) )
24233impia 1261 1  |-  ( ( X  e.  V  /\  Y  e.  V  /\  A  e.  { X ,  Y } )  ->  E. b  e.  V  { X ,  Y }  =  { A ,  b } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  upgredg2vtx  26036
  Copyright terms: Public domain W3C validator