| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq2tri | Structured version Visualization version Unicode version | ||
| Description: A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| eq2tr.1 |
|
| eq2tr.2 |
|
| Ref | Expression |
|---|---|
| eq2tri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 466 |
. 2
| |
| 2 | eq2tr.1 |
. . . 4
| |
| 3 | 2 | eqeq2d 2632 |
. . 3
|
| 4 | 3 | pm5.32i 669 |
. 2
|
| 5 | eq2tr.2 |
. . . 4
| |
| 6 | 5 | eqeq2d 2632 |
. . 3
|
| 7 | 6 | pm5.32i 669 |
. 2
|
| 8 | 1, 4, 7 | 3bitr3i 290 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 |
| This theorem is referenced by: xpassen 8054 |
| Copyright terms: Public domain | W3C validator |