![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq1w | Structured version Visualization version Unicode version |
Description: Weaker version of eleq1 2689 (but more general than elequ1 1997) not depending on ax-ext 2602 (nor ax-12 2047 nor df-cleq 2615). (Contributed by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
eleq1w |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 1953 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1d 741 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | exbidv 1850 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-clel 2618 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | df-clel 2618 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | 3bitr4g 303 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-clel 2618 |
This theorem is referenced by: reu8 3402 eqeuel 3941 reuccats1 13480 sumeven 15110 sumodd 15111 numedglnl 26039 fusgr2wsp2nb 27198 numclwlk2lem2f1o 27238 fsumiunle 29575 bj-clelsb3 32848 bj-nfcjust 32850 ftc1anclem6 33490 inxprnres 34060 lmbr3 39979 cnrefiisp 40056 sbgoldbm 41672 |
Copyright terms: Public domain | W3C validator |