| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euan | Structured version Visualization version Unicode version | ||
| Description: Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 24-Dec-2018.) |
| Ref | Expression |
|---|---|
| moanim.1 |
|
| Ref | Expression |
|---|---|
| euan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2494 |
. . . 4
| |
| 2 | moanim.1 |
. . . . 5
| |
| 3 | simpl 473 |
. . . . 5
| |
| 4 | 2, 3 | exlimi 2086 |
. . . 4
|
| 5 | 1, 4 | syl 17 |
. . 3
|
| 6 | ibar 525 |
. . . . 5
| |
| 7 | 2, 6 | eubid 2488 |
. . . 4
|
| 8 | 7 | biimprcd 240 |
. . 3
|
| 9 | 5, 8 | jcai 559 |
. 2
|
| 10 | 7 | biimpa 501 |
. 2
|
| 11 | 9, 10 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 |
| This theorem is referenced by: euanv 2534 2eu7 2559 2eu8 2560 |
| Copyright terms: Public domain | W3C validator |