MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdh Structured version   Visualization version   Unicode version

Theorem exlimdh 2149
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.)
Hypotheses
Ref Expression
exlimdh.1  |-  ( ph  ->  A. x ph )
exlimdh.2  |-  ( ch 
->  A. x ch )
exlimdh.3  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
exlimdh  |-  ( ph  ->  ( E. x ps 
->  ch ) )

Proof of Theorem exlimdh
StepHypRef Expression
1 exlimdh.1 . . 3  |-  ( ph  ->  A. x ph )
21nf5i 2024 . 2  |-  F/ x ph
3 exlimdh.2 . . 3  |-  ( ch 
->  A. x ch )
43nf5i 2024 . 2  |-  F/ x ch
5 exlimdh.3 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
62, 4, 5exlimd 2087 1  |-  ( ph  ->  ( E. x ps 
->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nf 1710
This theorem is referenced by:  exlimexi  38730  eexinst01  38732  eexinst11  38733
  Copyright terms: Public domain W3C validator