| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdh | Structured version Visualization version Unicode version | ||
| Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-Jan-1997.) |
| Ref | Expression |
|---|---|
| exlimdh.1 |
|
| exlimdh.2 |
|
| exlimdh.3 |
|
| Ref | Expression |
|---|---|
| exlimdh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdh.1 |
. . 3
| |
| 2 | 1 | nf5i 2024 |
. 2
|
| 3 | exlimdh.2 |
. . 3
| |
| 4 | 3 | nf5i 2024 |
. 2
|
| 5 | exlimdh.3 |
. 2
| |
| 6 | 2, 4, 5 | exlimd 2087 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: exlimexi 38730 eexinst01 38732 eexinst11 38733 |
| Copyright terms: Public domain | W3C validator |