| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimd | Structured version Visualization version Unicode version | ||
| Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| exlimd.1 |
|
| exlimd.2 |
|
| exlimd.3 |
|
| Ref | Expression |
|---|---|
| exlimd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimd.1 |
. . 3
| |
| 2 | exlimd.3 |
. . 3
| |
| 3 | 1, 2 | eximd 2085 |
. 2
|
| 4 | exlimd.2 |
. . 3
| |
| 5 | 4 | 19.9 2072 |
. 2
|
| 6 | 3, 5 | syl6ib 241 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: exlimdd 2088 exlimdh 2149 equs5 2351 moexex 2541 2eu6 2558 exists2 2562 ceqsalgALT 3231 alxfr 4878 copsex2t 4957 mosubopt 4972 ovmpt2df 6792 ov3 6797 tz7.48-1 7538 ac6c4 9303 fsum2dlem 14501 fprod2dlem 14710 gsum2d2lem 18372 padct 29497 exlimim 33189 exellim 33192 wl-lem-moexsb 33350 exlimddvf 33926 stoweidlem27 40244 fourierdlem31 40355 intsaluni 40547 isomenndlem 40744 |
| Copyright terms: Public domain | W3C validator |