MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbaevg Structured version   Visualization version   Unicode version

Theorem hbaevg 1984
Description: Generalization of hbaev 1985, proved at no extra cost. Instance of aev2 1986. (Contributed by Wolf Lammen, 22-Mar-2021.) (Revised by BJ, 29-Mar-2021.)
Assertion
Ref Expression
hbaevg  |-  ( A. x  x  =  y  ->  A. z A. t 
t  =  u )
Distinct variable groups:    x, y    u, t

Proof of Theorem hbaevg
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aevlem 1981 . 2  |-  ( A. x  x  =  y  ->  A. v  v  =  w )
2 aevlem 1981 . . 3  |-  ( A. v  v  =  w  ->  A. t  t  =  u )
32alrimiv 1855 . 2  |-  ( A. v  v  =  w  ->  A. z A. t 
t  =  u )
41, 3syl 17 1  |-  ( A. x  x  =  y  ->  A. z A. t 
t  =  u )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  hbaev  1985  aev2  1986
  Copyright terms: Public domain W3C validator