| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifeqeqx | Structured version Visualization version Unicode version | ||
| Description: An equality theorem tailored for ballotlemsf1o 30575. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
| Ref | Expression |
|---|---|
| ifeqeqx.1 |
|
| ifeqeqx.2 |
|
| ifeqeqx.3 |
|
| ifeqeqx.4 |
|
| ifeqeqx.5 |
|
| ifeqeqx.6 |
|
| ifeqeqx.y |
|
| ifeqeqx.x |
|
| Ref | Expression |
|---|---|
| ifeqeqx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2633 |
. 2
| |
| 2 | eqeq2 2633 |
. 2
| |
| 3 | simplr 792 |
. . 3
| |
| 4 | simpll 790 |
. . . 4
| |
| 5 | simpr 477 |
. . . . 5
| |
| 6 | sbceq1a 3446 |
. . . . . 6
| |
| 7 | 6 | biimpd 219 |
. . . . 5
|
| 8 | 3, 5, 7 | sylc 65 |
. . . 4
|
| 9 | dfsbcq 3437 |
. . . . . 6
| |
| 10 | csbeq1 3536 |
. . . . . . 7
| |
| 11 | 10 | eqeq2d 2632 |
. . . . . 6
|
| 12 | 9, 11 | imbi12d 334 |
. . . . 5
|
| 13 | dfsbcq 3437 |
. . . . . 6
| |
| 14 | csbeq1 3536 |
. . . . . . 7
| |
| 15 | 14 | eqeq2d 2632 |
. . . . . 6
|
| 16 | 13, 15 | imbi12d 334 |
. . . . 5
|
| 17 | ifeqeqx.x |
. . . . . . . . . 10
| |
| 18 | nfcvd 2765 |
. . . . . . . . . . 11
| |
| 19 | ifeqeqx.1 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | csbiegf 3557 |
. . . . . . . . . 10
|
| 21 | 17, 20 | syl 17 |
. . . . . . . . 9
|
| 22 | ifeqeqx.5 |
. . . . . . . . 9
| |
| 23 | 21, 22 | eqtr4d 2659 |
. . . . . . . 8
|
| 24 | 23 | adantr 481 |
. . . . . . 7
|
| 25 | 24 | eqcomd 2628 |
. . . . . 6
|
| 26 | 25 | a1d 25 |
. . . . 5
|
| 27 | pm3.24 926 |
. . . . . . . . . 10
| |
| 28 | ifeqeqx.y |
. . . . . . . . . . . 12
| |
| 29 | ifeqeqx.4 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | sbcieg 3468 |
. . . . . . . . . . . 12
|
| 31 | 28, 30 | syl 17 |
. . . . . . . . . . 11
|
| 32 | 31 | anbi1d 741 |
. . . . . . . . . 10
|
| 33 | 27, 32 | mtbiri 317 |
. . . . . . . . 9
|
| 34 | 33 | pm2.21d 118 |
. . . . . . . 8
|
| 35 | 34 | imp 445 |
. . . . . . 7
|
| 36 | 35 | anass1rs 849 |
. . . . . 6
|
| 37 | 36 | ex 450 |
. . . . 5
|
| 38 | 12, 16, 26, 37 | ifbothda 4123 |
. . . 4
|
| 39 | 4, 8, 38 | sylc 65 |
. . 3
|
| 40 | csbeq1a 3542 |
. . . . 5
| |
| 41 | 40 | eqeq2d 2632 |
. . . 4
|
| 42 | 41 | biimprd 238 |
. . 3
|
| 43 | 3, 39, 42 | sylc 65 |
. 2
|
| 44 | simplr 792 |
. . 3
| |
| 45 | simpll 790 |
. . . 4
| |
| 46 | simpr 477 |
. . . . 5
| |
| 47 | 6 | notbid 308 |
. . . . . 6
|
| 48 | 47 | biimpd 219 |
. . . . 5
|
| 49 | 44, 46, 48 | sylc 65 |
. . . 4
|
| 50 | 9 | notbid 308 |
. . . . . 6
|
| 51 | csbeq1 3536 |
. . . . . . 7
| |
| 52 | 51 | eqeq2d 2632 |
. . . . . 6
|
| 53 | 50, 52 | imbi12d 334 |
. . . . 5
|
| 54 | 13 | notbid 308 |
. . . . . 6
|
| 55 | csbeq1 3536 |
. . . . . . 7
| |
| 56 | 55 | eqeq2d 2632 |
. . . . . 6
|
| 57 | 54, 56 | imbi12d 334 |
. . . . 5
|
| 58 | ifeqeqx.3 |
. . . . . . . . . . . . . 14
| |
| 59 | 58 | sbcieg 3468 |
. . . . . . . . . . . . 13
|
| 60 | 17, 59 | syl 17 |
. . . . . . . . . . . 12
|
| 61 | 60 | notbid 308 |
. . . . . . . . . . 11
|
| 62 | 61 | biimpd 219 |
. . . . . . . . . 10
|
| 63 | ifeqeqx.6 |
. . . . . . . . . . 11
| |
| 64 | 63 | ex 450 |
. . . . . . . . . 10
|
| 65 | 62, 64 | nsyld 154 |
. . . . . . . . 9
|
| 66 | 65 | anim2d 589 |
. . . . . . . 8
|
| 67 | 27, 66 | mtoi 190 |
. . . . . . 7
|
| 68 | 67 | pm2.21d 118 |
. . . . . 6
|
| 69 | 68 | expdimp 453 |
. . . . 5
|
| 70 | nfcvd 2765 |
. . . . . . . . . 10
| |
| 71 | ifeqeqx.2 |
. . . . . . . . . 10
| |
| 72 | 70, 71 | csbiegf 3557 |
. . . . . . . . 9
|
| 73 | 28, 72 | syl 17 |
. . . . . . . 8
|
| 74 | 73 | adantr 481 |
. . . . . . 7
|
| 75 | 74 | eqcomd 2628 |
. . . . . 6
|
| 76 | 75 | a1d 25 |
. . . . 5
|
| 77 | 53, 57, 69, 76 | ifbothda 4123 |
. . . 4
|
| 78 | 45, 49, 77 | sylc 65 |
. . 3
|
| 79 | csbeq1a 3542 |
. . . . 5
| |
| 80 | 79 | eqeq2d 2632 |
. . . 4
|
| 81 | 80 | biimprd 238 |
. . 3
|
| 82 | 44, 78, 81 | sylc 65 |
. 2
|
| 83 | 1, 2, 43, 82 | ifbothda 4123 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-if 4087 |
| This theorem is referenced by: ballotlemsf1o 30575 |
| Copyright terms: Public domain | W3C validator |