![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version Unicode version |
Description: A wff ![]() |
Ref | Expression |
---|---|
ifboth.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifboth.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifbothda.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifbothda.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifbothda |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbothda.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | iftrue 4092 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eqcomd 2628 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ifboth.1 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl 17 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | adantl 482 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | mpbid 222 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | ifbothda.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | iffalse 4095 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | eqcomd 2628 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | ifboth.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11 | syl 17 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | adantl 482 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 8, 13 | mpbid 222 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 7, 14 | pm2.61dan 832 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
This theorem is referenced by: ifboth 4124 resixpfo 7946 boxriin 7950 boxcutc 7951 suppr 8377 infpr 8409 cantnflem1 8586 ttukeylem5 9335 ttukeylem6 9336 bitsinv1lem 15163 bitsinv1 15164 smumullem 15214 hashgcdeq 15494 ramcl2lem 15713 acsfn 16320 tsrlemax 17220 odlem1 17954 gexlem1 17994 cyggex2 18298 dprdfeq0 18421 mplmon2 19493 evlslem1 19515 coe1tmmul2 19646 coe1tmmul 19647 xrsdsreclb 19793 ptcld 21416 xkopt 21458 stdbdxmet 22320 xrsxmet 22612 iccpnfcnv 22743 iccpnfhmeo 22744 xrhmeo 22745 dvcobr 23709 mdegle0 23837 dvradcnv 24175 psercnlem1 24179 psercn 24180 logtayl 24406 efrlim 24696 lgamgulmlem5 24759 musum 24917 dchrmulid2 24977 dchrsum2 24993 sumdchr2 24995 dchrisum0flblem1 25197 dchrisum0flblem2 25198 rplogsum 25216 pntlemj 25292 eupth2lem1 27078 eulerpathpr 27100 ifeqeqx 29361 xrge0iifcnv 29979 xrge0iifhom 29983 esumpinfval 30135 dstfrvunirn 30536 sgn3da 30603 plymulx0 30624 signswn0 30637 signswch 30638 fnejoin2 32364 poimirlem16 33425 poimirlem17 33426 poimirlem19 33428 poimirlem20 33429 poimirlem24 33433 cnambfre 33458 itg2addnclem 33461 itg2addnclem3 33463 itg2addnc 33464 itg2gt0cn 33465 ftc1anclem7 33491 ftc1anclem8 33492 ftc1anc 33493 kelac1 37633 |
Copyright terms: Public domain | W3C validator |