Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbi123 Structured version   Visualization version   Unicode version

Theorem ifpbi123 37835
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
Assertion
Ref Expression
ifpbi123  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  (if- ( ph ,  ch ,  ta ) 
<-> if- ( ps ,  th ,  et ) ) )

Proof of Theorem ifpbi123
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  ( ph  <->  ps ) )
2 simp2 1062 . . . 4  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  ( ch  <->  th ) )
31, 2imbi12d 334 . . 3  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) )
41notbid 308 . . . 4  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  ( -.  ph  <->  -. 
ps ) )
5 simp3 1063 . . . 4  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  ( ta  <->  et ) )
64, 5imbi12d 334 . . 3  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  ( ( -.  ph  ->  ta )  <->  ( -.  ps  ->  et ) ) )
73, 6anbi12d 747 . 2  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  ( (
( ph  ->  ch )  /\  ( -.  ph  ->  ta ) )  <->  ( ( ps  ->  th )  /\  ( -.  ps  ->  et )
) ) )
8 dfifp2 1014 . 2  |-  (if- (
ph ,  ch ,  ta )  <->  ( ( ph  ->  ch )  /\  ( -.  ph  ->  ta )
) )
9 dfifp2 1014 . 2  |-  (if- ( ps ,  th ,  et )  <->  ( ( ps 
->  th )  /\  ( -.  ps  ->  et )
) )
107, 8, 93bitr4g 303 1  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et )
)  ->  (if- ( ph ,  ch ,  ta ) 
<-> if- ( ps ,  th ,  et ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3an 1039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator