| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfifp2 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of
the conditional operator for propositions. The
value of if- |
| Ref | Expression |
|---|---|
| dfifp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp 1013 |
. 2
| |
| 2 | cases2 993 |
. 2
| |
| 3 | 1, 2 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: dfifp3 1015 dfifp5 1017 ifpn 1022 ifpimpda 1028 ifpbi2 37811 ifpbi3 37812 ifpbi23 37817 ifpbi1 37822 ifpbi12 37833 ifpbi13 37834 ifpbi123 37835 ifpimimb 37849 ifpororb 37850 ifpbibib 37855 frege54cor0a 38157 |
| Copyright terms: Public domain | W3C validator |