Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbi2 Structured version   Visualization version   Unicode version

Theorem ifpbi2 37811
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
Assertion
Ref Expression
ifpbi2  |-  ( (
ph 
<->  ps )  ->  (if- ( ch ,  ph ,  th )  <-> if- ( ch ,  ps ,  th ) ) )

Proof of Theorem ifpbi2
StepHypRef Expression
1 imbi2 338 . . 3  |-  ( (
ph 
<->  ps )  ->  (
( ch  ->  ph )  <->  ( ch  ->  ps )
) )
21anbi1d 741 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ( ch  ->  ph )  /\  ( -. 
ch  ->  th ) )  <->  ( ( ch  ->  ps )  /\  ( -.  ch  ->  th ) ) ) )
3 dfifp2 1014 . 2  |-  (if- ( ch ,  ph ,  th )  <->  ( ( ch 
->  ph )  /\  ( -.  ch  ->  th )
) )
4 dfifp2 1014 . 2  |-  (if- ( ch ,  ps ,  th )  <->  ( ( ch 
->  ps )  /\  ( -.  ch  ->  th )
) )
52, 3, 43bitr4g 303 1  |-  ( (
ph 
<->  ps )  ->  (if- ( ch ,  ph ,  th )  <-> if- ( ch ,  ps ,  th ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013
This theorem is referenced by:  ifpnot23b  37827
  Copyright terms: Public domain W3C validator