Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpdfor Structured version   Visualization version   Unicode version

Theorem ifpdfor 37809
Description: Define or in terms of conditional logic operator and true. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpdfor  |-  ( (
ph  \/  ps )  <-> if- (
ph , T.  ,  ps ) )

Proof of Theorem ifpdfor
StepHypRef Expression
1 tru 1487 . . . 4  |- T.
21olci 406 . . 3  |-  ( -. 
ph  \/ T.  )
32biantrur 527 . 2  |-  ( (
ph  \/  ps )  <->  ( ( -.  ph  \/ T.  )  /\  ( ph  \/  ps ) ) )
4 dfifp4 1016 . 2  |-  (if- (
ph , T.  ,  ps )  <->  ( ( -. 
ph  \/ T.  )  /\  ( ph  \/  ps ) ) )
53, 4bitr4i 267 1  |-  ( (
ph  \/  ps )  <-> if- (
ph , T.  ,  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012   T. wtru 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-tru 1486
This theorem is referenced by:  ifpdfxor  37832
  Copyright terms: Public domain W3C validator