| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpid1g | Structured version Visualization version Unicode version | ||
| Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpid1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpidg 37836 |
. 2
| |
| 2 | ancom 466 |
. 2
| |
| 3 | pm4.25 537 |
. . . . 5
| |
| 4 | 3 | imbi2i 326 |
. . . 4
|
| 5 | orc 400 |
. . . . 5
| |
| 6 | 5 | biantru 526 |
. . . 4
|
| 7 | 4, 6 | bitr2i 265 |
. . 3
|
| 8 | pm4.24 675 |
. . . . 5
| |
| 9 | 8 | imbi1i 339 |
. . . 4
|
| 10 | simpl 473 |
. . . . 5
| |
| 11 | 10 | biantrur 527 |
. . . 4
|
| 12 | 9, 11 | bitr2i 265 |
. . 3
|
| 13 | 7, 12 | anbi12i 733 |
. 2
|
| 14 | 1, 2, 13 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |