| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpim23g | Structured version Visualization version Unicode version | ||
| Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpim23g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpidg 37836 |
. 2
| |
| 2 | dfor2 427 |
. . . . 5
| |
| 3 | 2 | imbi2i 326 |
. . . 4
|
| 4 | impexp 462 |
. . . 4
| |
| 5 | ax-1 6 |
. . . . . 6
| |
| 6 | 5 | adantl 482 |
. . . . 5
|
| 7 | 6 | biantrur 527 |
. . . 4
|
| 8 | 3, 4, 7 | 3bitr2i 288 |
. . 3
|
| 9 | impexp 462 |
. . . . 5
| |
| 10 | imdi 378 |
. . . . . 6
| |
| 11 | imor 428 |
. . . . . . . 8
| |
| 12 | orcom 402 |
. . . . . . . 8
| |
| 13 | 11, 12 | bitri 264 |
. . . . . . 7
|
| 14 | 13 | imbi2i 326 |
. . . . . 6
|
| 15 | 10, 14 | bitri 264 |
. . . . 5
|
| 16 | 9, 15 | bitri 264 |
. . . 4
|
| 17 | pm2.21 120 |
. . . . . 6
| |
| 18 | 17 | olcd 408 |
. . . . 5
|
| 19 | 18 | biantrur 527 |
. . . 4
|
| 20 | 16, 19 | bitri 264 |
. . 3
|
| 21 | 8, 20 | anbi12i 733 |
. 2
|
| 22 | ancom 466 |
. 2
| |
| 23 | 1, 21, 22 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: ifpim3 37841 ifpim4 37843 |
| Copyright terms: Public domain | W3C validator |