| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpim1g | Structured version Visualization version Unicode version | ||
| Description: Implication of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpim1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpim123g 37845 |
. 2
| |
| 2 | id 22 |
. . . . . 6
| |
| 3 | 2 | olci 406 |
. . . . 5
|
| 4 | 3 | biantrur 527 |
. . . 4
|
| 5 | 4 | bicomi 214 |
. . 3
|
| 6 | id 22 |
. . . . . 6
| |
| 7 | 6 | olci 406 |
. . . . 5
|
| 8 | 7 | biantru 526 |
. . . 4
|
| 9 | 8 | bicomi 214 |
. . 3
|
| 10 | 5, 9 | anbi12i 733 |
. 2
|
| 11 | 1, 10 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: ifp1bi 37847 |
| Copyright terms: Public domain | W3C validator |