Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpim2 Structured version   Visualization version   Unicode version

Theorem ifpim2 37816
Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpim2  |-  ( (
ph  ->  ps )  <-> if- ( ps , T.  ,  -.  ph ) )

Proof of Theorem ifpim2
StepHypRef Expression
1 tru 1487 . . . 4  |- T.
21olci 406 . . 3  |-  ( -. 
ps  \/ T.  )
32biantrur 527 . 2  |-  ( ( ps  \/  -.  ph ) 
<->  ( ( -.  ps  \/ T.  )  /\  ( ps  \/  -.  ph )
) )
4 imor 428 . . 3  |-  ( (
ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
5 orcom 402 . . 3  |-  ( ( -.  ph  \/  ps ) 
<->  ( ps  \/  -.  ph ) )
64, 5bitri 264 . 2  |-  ( (
ph  ->  ps )  <->  ( ps  \/  -.  ph ) )
7 dfifp4 1016 . 2  |-  (if- ( ps , T.  ,  -.  ph )  <->  ( ( -.  ps  \/ T.  )  /\  ( ps  \/  -.  ph ) ) )
83, 6, 73bitr4i 292 1  |-  ( (
ph  ->  ps )  <-> if- ( ps , T.  ,  -.  ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012   T. wtru 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-tru 1486
This theorem is referenced by:  ifpdfbi  37818
  Copyright terms: Public domain W3C validator