MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi1 Structured version   Visualization version   Unicode version

Theorem imbi1 337
Description: Theorem *4.84 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
imbi1  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ch )  <->  ( ps  ->  ch )
) )

Proof of Theorem imbi1
StepHypRef Expression
1 id 22 . 2  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
21imbi1d 331 1  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ch )  <->  ( ps  ->  ch )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  imbi1i  339  wl-nanbi1  33300  wl-nanbi2  33301  ifpbi1  37822  3impexpVD  39091  ancomstVD  39101  onfrALTVD  39127  hbimpgVD  39140  hbexgVD  39142  ax6e2ndeqVD  39145  ax6e2ndeqALT  39167
  Copyright terms: Public domain W3C validator