| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax6e2ndeqVD | Structured version Visualization version Unicode version | ||
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 38785)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 38773 is ax6e2ndeqVD 39145 without virtual
deductions and was automatically derived from ax6e2ndeqVD 39145.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| ax6e2ndeqVD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e2nd 38774 |
. . 3
| |
| 2 | ax6e2eq 38773 |
. . . 4
| |
| 3 | 1 | a1d 25 |
. . . 4
|
| 4 | exmid 431 |
. . . 4
| |
| 5 | jao 534 |
. . . 4
| |
| 6 | 2, 3, 4, 5 | e000 38994 |
. . 3
|
| 7 | 1, 6 | jaoi 394 |
. 2
|
| 8 | idn1 38790 |
. . . . . . . . . . . . . . . 16
| |
| 9 | idn2 38838 |
. . . . . . . . . . . . . . . . 17
| |
| 10 | simpl 473 |
. . . . . . . . . . . . . . . . 17
| |
| 11 | 9, 10 | e2 38856 |
. . . . . . . . . . . . . . . 16
|
| 12 | neeq1 2856 |
. . . . . . . . . . . . . . . . 17
| |
| 13 | 12 | biimprcd 240 |
. . . . . . . . . . . . . . . 16
|
| 14 | 8, 11, 13 | e12 38951 |
. . . . . . . . . . . . . . 15
|
| 15 | simpr 477 |
. . . . . . . . . . . . . . . 16
| |
| 16 | 9, 15 | e2 38856 |
. . . . . . . . . . . . . . 15
|
| 17 | neeq2 2857 |
. . . . . . . . . . . . . . . 16
| |
| 18 | 17 | biimprcd 240 |
. . . . . . . . . . . . . . 15
|
| 19 | 14, 16, 18 | e22 38896 |
. . . . . . . . . . . . . 14
|
| 20 | df-ne 2795 |
. . . . . . . . . . . . . . . 16
| |
| 21 | 20 | bicomi 214 |
. . . . . . . . . . . . . . 15
|
| 22 | sp 2053 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 22 | con3i 150 |
. . . . . . . . . . . . . . 15
|
| 24 | 21, 23 | sylbir 225 |
. . . . . . . . . . . . . 14
|
| 25 | 19, 24 | e2 38856 |
. . . . . . . . . . . . 13
|
| 26 | 25 | in2 38830 |
. . . . . . . . . . . 12
|
| 27 | 26 | gen11 38841 |
. . . . . . . . . . 11
|
| 28 | exim 1761 |
. . . . . . . . . . 11
| |
| 29 | 27, 28 | e1a 38852 |
. . . . . . . . . 10
|
| 30 | nfnae 2318 |
. . . . . . . . . . 11
| |
| 31 | 30 | 19.9 2072 |
. . . . . . . . . 10
|
| 32 | imbi2 338 |
. . . . . . . . . . 11
| |
| 33 | 32 | biimpcd 239 |
. . . . . . . . . 10
|
| 34 | 29, 31, 33 | e10 38919 |
. . . . . . . . 9
|
| 35 | 34 | gen11 38841 |
. . . . . . . 8
|
| 36 | exim 1761 |
. . . . . . . 8
| |
| 37 | 35, 36 | e1a 38852 |
. . . . . . 7
|
| 38 | excom 2042 |
. . . . . . 7
| |
| 39 | imbi1 337 |
. . . . . . . 8
| |
| 40 | 39 | biimprcd 240 |
. . . . . . 7
|
| 41 | 37, 38, 40 | e10 38919 |
. . . . . 6
|
| 42 | hbnae 2317 |
. . . . . . . . 9
| |
| 43 | 42 | eximi 1762 |
. . . . . . . 8
|
| 44 | nfa1 2028 |
. . . . . . . . 9
| |
| 45 | 44 | 19.9 2072 |
. . . . . . . 8
|
| 46 | 43, 45 | sylib 208 |
. . . . . . 7
|
| 47 | sp 2053 |
. . . . . . 7
| |
| 48 | 46, 47 | syl 17 |
. . . . . 6
|
| 49 | imim1 83 |
. . . . . 6
| |
| 50 | 41, 48, 49 | e10 38919 |
. . . . 5
|
| 51 | orc 400 |
. . . . . 6
| |
| 52 | 51 | imim2i 16 |
. . . . 5
|
| 53 | 50, 52 | e1a 38852 |
. . . 4
|
| 54 | 53 | in1 38787 |
. . 3
|
| 55 | idn1 38790 |
. . . . . 6
| |
| 56 | ax-1 6 |
. . . . . 6
| |
| 57 | 55, 56 | e1a 38852 |
. . . . 5
|
| 58 | olc 399 |
. . . . . 6
| |
| 59 | 58 | imim2i 16 |
. . . . 5
|
| 60 | 57, 59 | e1a 38852 |
. . . 4
|
| 61 | 60 | in1 38787 |
. . 3
|
| 62 | exmidne 2804 |
. . 3
| |
| 63 | jao 534 |
. . . 4
| |
| 64 | 63 | com12 32 |
. . 3
|
| 65 | 54, 61, 62, 64 | e000 38994 |
. 2
|
| 66 | 7, 65 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-v 3202 df-vd1 38786 df-vd2 38794 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |