MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inres Structured version   Visualization version   Unicode version

Theorem inres 5414
Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
inres  |-  ( A  i^i  ( B  |`  C ) )  =  ( ( A  i^i  B )  |`  C )

Proof of Theorem inres
StepHypRef Expression
1 inass 3823 . 2  |-  ( ( A  i^i  B )  i^i  ( C  X.  _V ) )  =  ( A  i^i  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 5126 . 2  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  i^i  B
)  i^i  ( C  X.  _V ) )
3 df-res 5126 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
43ineq2i 3811 . 2  |-  ( A  i^i  ( B  |`  C ) )  =  ( A  i^i  ( B  i^i  ( C  X.  _V ) ) )
51, 2, 43eqtr4ri 2655 1  |-  ( A  i^i  ( B  |`  C ) )  =  ( ( A  i^i  B )  |`  C )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   _Vcvv 3200    i^i cin 3573    X. cxp 5112    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-res 5126
This theorem is referenced by:  resindm  5444  fninfp  6440  inres2  34007
  Copyright terms: Public domain W3C validator