| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabi | Structured version Visualization version Unicode version | ||
| Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| iotabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2737 |
. . . . . 6
| |
| 2 | 1 | biimpi 206 |
. . . . 5
|
| 3 | 2 | eqeq1d 2624 |
. . . 4
|
| 4 | 3 | abbidv 2741 |
. . 3
|
| 5 | 4 | unieqd 4446 |
. 2
|
| 6 | df-iota 5851 |
. 2
| |
| 7 | df-iota 5851 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: iotabidv 5872 iotabii 5873 eusvobj1 6644 iotasbcq 38638 |
| Copyright terms: Public domain | W3C validator |