MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi Structured version   Visualization version   Unicode version

Theorem abbi 2737
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.)
Assertion
Ref Expression
abbi  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )

Proof of Theorem abbi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 hbab1 2611 . . 3  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
2 hbab1 2611 . . 3  |-  ( y  e.  { x  |  ps }  ->  A. x  y  e.  { x  |  ps } )
31, 2cleqh 2724 . 2  |-  ( { x  |  ph }  =  { x  |  ps } 
<-> 
A. x ( x  e.  { x  | 
ph }  <->  x  e.  { x  |  ps }
) )
4 abid 2610 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
5 abid 2610 . . . 4  |-  ( x  e.  { x  |  ps }  <->  ps )
64, 5bibi12i 329 . . 3  |-  ( ( x  e.  { x  |  ph }  <->  x  e.  { x  |  ps }
)  <->  ( ph  <->  ps )
)
76albii 1747 . 2  |-  ( A. x ( x  e. 
{ x  |  ph } 
<->  x  e.  { x  |  ps } )  <->  A. x
( ph  <->  ps ) )
83, 7bitr2i 265 1  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618
This theorem is referenced by:  abbii  2739  abbid  2740  nabbi  2896  rabbi  3120  sbcbi2  3484  rabeqsn  4214  iuneq12df  4544  dfiota2  5852  iotabi  5860  uniabio  5861  iotanul  5866  karden  8758  iuneq12daf  29373  bj-cleq  32949  abeq12  33964  elnev  38639  csbingVD  39120  csbsngVD  39129  csbxpgVD  39130  csbrngVD  39132  csbunigVD  39134  csbfv12gALTVD  39135
  Copyright terms: Public domain W3C validator