MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotajust Structured version   Visualization version   Unicode version

Theorem iotajust 5850
Description: Soundness justification theorem for df-iota 5851. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
iotajust  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. { z  |  {
x  |  ph }  =  { z } }
Distinct variable groups:    x, z    ph, z    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem iotajust
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sneq 4187 . . . . 5  |-  ( y  =  w  ->  { y }  =  { w } )
21eqeq2d 2632 . . . 4  |-  ( y  =  w  ->  ( { x  |  ph }  =  { y }  <->  { x  |  ph }  =  {
w } ) )
32cbvabv 2747 . . 3  |-  { y  |  { x  | 
ph }  =  {
y } }  =  { w  |  {
x  |  ph }  =  { w } }
4 sneq 4187 . . . . 5  |-  ( w  =  z  ->  { w }  =  { z } )
54eqeq2d 2632 . . . 4  |-  ( w  =  z  ->  ( { x  |  ph }  =  { w }  <->  { x  |  ph }  =  {
z } ) )
65cbvabv 2747 . . 3  |-  { w  |  { x  |  ph }  =  { w } }  =  {
z  |  { x  |  ph }  =  {
z } }
73, 6eqtri 2644 . 2  |-  { y  |  { x  | 
ph }  =  {
y } }  =  { z  |  {
x  |  ph }  =  { z } }
87unieqi 4445 1  |-  U. {
y  |  { x  |  ph }  =  {
y } }  =  U. { z  |  {
x  |  ph }  =  { z } }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   {cab 2608   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-sn 4178  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator