| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneq | Structured version Visualization version Unicode version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| sneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2633 |
. . 3
| |
| 2 | 1 | abbidv 2741 |
. 2
|
| 3 | df-sn 4178 |
. 2
| |
| 4 | df-sn 4178 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2681 |
1
|
| Copyright terms: Public domain | W3C validator |