| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem25 | Structured version Visualization version Unicode version | ||
| Description: Lemma for mapdpg 36995. Baer p. 45 line 12: "Then we have Gy' = Gy'' and G(x'-y') = G(x'-y'')." (Contributed by NM, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpg.h |
|
| mapdpg.m |
|
| mapdpg.u |
|
| mapdpg.v |
|
| mapdpg.s |
|
| mapdpg.z |
|
| mapdpg.n |
|
| mapdpg.c |
|
| mapdpg.f |
|
| mapdpg.r |
|
| mapdpg.j |
|
| mapdpg.k |
|
| mapdpg.x |
|
| mapdpg.y |
|
| mapdpg.g |
|
| mapdpg.ne |
|
| mapdpg.e |
|
| mapdpgem25.h1 |
|
| mapdpgem25.i1 |
|
| Ref | Expression |
|---|---|
| mapdpglem25 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpgem25.h1 |
. . . . 5
| |
| 2 | 1 | simprd 479 |
. . . 4
|
| 3 | 2 | simpld 475 |
. . 3
|
| 4 | mapdpgem25.i1 |
. . . . 5
| |
| 5 | 4 | simprd 479 |
. . . 4
|
| 6 | 5 | simpld 475 |
. . 3
|
| 7 | 3, 6 | eqtr3d 2658 |
. 2
|
| 8 | 2 | simprd 479 |
. . 3
|
| 9 | 5 | simprd 479 |
. . 3
|
| 10 | 8, 9 | eqtr3d 2658 |
. 2
|
| 11 | 7, 10 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 |
| This theorem is referenced by: mapdpglem26 36987 mapdpglem27 36988 |
| Copyright terms: Public domain | W3C validator |