HomeHome Metamath Proof Explorer
Theorem List (p. 370 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 36901-37000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlcd0v2 36901 The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  .0.  =  ( 0g `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  =  .0.  )
 
Theoremlcd0vvalN 36902 Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( O `  X )  =  .0.  )
 
Theoremlcd0vcl 36903 Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  O  =  ( 0g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  e.  V )
 
Theoremlcd0vs 36904 A scalar zero times a functional is the zero functional. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  (  .0.  .x.  G )  =  O )
 
Theoremlcdvs0N 36905 A scalar times the zero functional is the zero functional. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .x.  =  ( .s `  C )   &    |-  .0.  =  ( 0g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  R )   =>    |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremlcdvsub 36906 The value of vector subtraction in the closed kernel dual space. (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  N  =  ( invg `  S )   &    |-  .1.  =  ( 1r `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .+  =  ( +g  `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  .-  =  ( -g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  ( F  .-  G )  =  ( F  .+  (
 ( N `  .1.  )  .x.  G ) ) )
 
Theoremlcdvsubval 36907 The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  S  =  ( -g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .-  =  ( -g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  G  e.  D )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  (
 ( F  .-  G ) `  X )  =  ( ( F `  X ) S ( G `  X ) ) )
 
Theoremlcdlss 36908* Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  ( LSubSp `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  B  =  { f  e.  F  |  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  S  =  ( T  i^i  ~P B ) )
 
Theoremlcdlss2N 36909 Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  ( LSubSp `  C )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  S  =  ( T  i^i  ~P V ) )
 
Theoremlcdlsp 36910 Span in the set of functionals with closed kernels. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  M  =  ( LSpan `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  N  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G 
 C_  F )   =>    |-  ( ph  ->  ( N `  G )  =  ( M `  G ) )
 
TheoremlcdlkreqN 36911 Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  L  =  (LKer `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .0.  =  ( 0g `  C )   &    |-  N  =  ( LSpan `  C )   &    |-  V  =  (
 Base `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  G  e.  ( N `  { I }
 ) )   &    |-  ( ph  ->  G  =/=  .0.  )   =>    |-  ( ph  ->  ( L `  G )  =  ( L `  I ) )
 
Theoremlcdlkreq2N 36912 Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  L  =  (LKer `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  (
 Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  A  e.  ( R  \  {  .0.  }
 ) )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  G  =  ( A  .x.  I )
 )   =>    |-  ( ph  ->  ( L `  G )  =  ( L `  I
 ) )
 
Syntaxcmpd 36913 Extend class notation with projectivity from subspaces of vector space H to subspaces of functionals with closed kernels.
 class mapd
 
Definitiondf-mapd 36914* Extend class notation with a one-to-one onto (mapd1o 36937), order-preserving (mapdord 36927) map, called a projectivity (definition of projectivity in [Baer] p. 40), from subspaces of vector space H to those subspaces of the dual space having functionals with closed kernels. (Contributed by NM, 25-Jan-2015.)
 |- mapd  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( s  e.  ( LSubSp `  (
 ( DVecH `  k ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  k
 ) `  w )
 )  |  ( ( ( ( ocH `  k
 ) `  w ) `  ( ( ( ocH `  k ) `  w ) `  ( (LKer `  ( ( DVecH `  k
 ) `  w )
 ) `  f )
 ) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  ( ( ( ocH `  k
 ) `  w ) `  ( (LKer `  (
 ( DVecH `  k ) `  w ) ) `  f ) )  C_  s ) } )
 ) )
 
Theoremmapdffval 36915* Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (mapd `  K )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) 
 |->  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `  w ) `  ( ( ( ocH `  K ) `  w ) `  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f ) ) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f )  /\  ( ( ( ocH `  K ) `  w ) `  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f ) ) 
 C_  s ) }
 ) ) )
 
Theoremmapdfval 36916* Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   =>    |-  ( ( K  e.  X  /\  W  e.  H )  ->  M  =  ( s  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `
  f ) ) )  =  ( L `
  f )  /\  ( O `  ( L `
  f ) ) 
 C_  s ) }
 ) )
 
Theoremmapdval 36917* Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  F  |  ( ( O `  ( O `
  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `
  ( L `  f ) )  C_  T ) } )
 
Theoremmapdvalc 36918* Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  C  |  ( O `
  ( L `  f ) )  C_  T } )
 
Theoremmapdval2N 36919* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  C  |  E. v  e.  T  ( O `  ( L `  f ) )  =  ( N `
  { v }
 ) } )
 
Theoremmapdval3N 36920* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( M `  T )  =  U_ v  e.  T  { f  e.  C  |  ( O `
  ( L `  f ) )  =  ( N `  { v } ) } )
 
Theoremmapdval4N 36921* Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is  C_  C) 2. The unneeded direction of lcfl8a 36792 has awkward  E.- add another thm with only one direction of it? 3. Swap  O `  {
v } and  L `  f? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   =>    |-  ( ph  ->  ( M `  T )  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f
 ) } )
 
Theoremmapdval5N 36922* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  T  e.  S )   =>    |-  ( ph  ->  ( M `  T )  =  U_ v  e.  T  { f  e.  F  |  ( O `
  { v }
 )  =  ( L `
  f ) }
 )
 
Theoremmapdordlem1a 36923* Lemma for mapdord 36927. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  Y  =  (LSHyp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  T  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  e.  Y }   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ( J  e.  T  <->  ( J  e.  C  /\  ( O `  ( O `  ( L `
  J ) ) )  e.  Y ) ) )
 
Theoremmapdordlem1bN 36924* Lemma for mapdord 36927. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
 |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( J  e.  C 
 <->  ( J  e.  F  /\  ( O `  ( O `  ( L `  J ) ) )  =  ( L `  J ) ) )
 
Theoremmapdordlem1 36925* Lemma for mapdord 36927. (Contributed by NM, 27-Jan-2015.)
 |-  T  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  e.  Y }   =>    |-  ( J  e.  T 
 <->  ( J  e.  F  /\  ( O `  ( O `  ( L `  J ) ) )  e.  Y ) )
 
Theoremmapdordlem2 36926* Lemma for mapdord 36927. Ordering property of projectivity  M. TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the 
T hypothesis. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  A  =  (LSAtoms `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  T  =  {
 g  e.  F  |  ( O `  ( O `
  ( L `  g ) ) )  e.  J }   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   =>    |-  ( ph  ->  ( ( M `  X )  C_  ( M `  Y )  <->  X  C_  Y ) )
 
Theoremmapdord 36927 Ordering property of the map defined by df-mapd 36914. Property (b) of [Baer] p. 40. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  (
 ( M `  X )  C_  ( M `  Y )  <->  X  C_  Y ) )
 
Theoremmapd11 36928 The map defined by df-mapd 36914 is one-to-one. Property (c) of [Baer] p. 40. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  (
 ( M `  X )  =  ( M `  Y )  <->  X  =  Y ) )
 
TheoremmapddlssN 36929 The mapping of a subspace of vector space H to the dual space is a subspace of the dual space. TODO: Make this obsolete, use mapdcl2 36945 instead. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  S )   =>    |-  ( ph  ->  ( M `  R )  e.  T )
 
Theoremmapdsn 36930* Value of the map defined by df-mapd 36914 at the span of a singleton. (Contributed by NM, 16-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  {
 f  e.  F  |  ( O `  { X } )  C_  ( L `
  f ) }
 )
 
Theoremmapdsn2 36931* Value of the map defined by df-mapd 36914 at the span of a singleton. (Contributed by NM, 16-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( L `  G )  =  ( O `  { X }
 ) )   =>    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  { f  e.  F  |  ( L `
  G )  C_  ( L `  f ) } )
 
Theoremmapdsn3 36932 Value of the map defined by df-mapd 36914 at the span of a singleton. (Contributed by NM, 17-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  P  =  ( LSpan `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  G )  =  ( O `  { X } ) )   =>    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( P `  { G } ) )
 
Theoremmapd1dim2lem1N 36933* Value of the map defined by df-mapd 36914 at an atom. (Contributed by NM, 10-Feb-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  A  =  (LSAtoms `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  A )   =>    |-  ( ph  ->  ( M `  Q )  =  { f  e.  F  |  E. v  e.  Q  ( O `  { v } )  =  ( L `  f
 ) } )
 
Theoremmapdrvallem2 36934* Lemma for mapdrval 36936. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   &    |-  Q  =  U_ h  e.  R  ( O `  ( L `  h ) )   &    |-  V  =  (
 Base `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  Y  =  ( 0g
 `  D )   =>    |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `
  f ) ) 
 C_  Q }  C_  R )
 
Theoremmapdrvallem3 36935* Lemma for mapdrval 36936. (Contributed by NM, 2-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   &    |-  Q  =  U_ h  e.  R  ( O `  ( L `  h ) )   &    |-  V  =  (
 Base `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  Y  =  ( 0g
 `  D )   =>    |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `
  f ) ) 
 C_  Q }  =  R )
 
Theoremmapdrval 36936* Given a dual subspace  R (of functionals with closed kernels), reconstruct the subspace 
Q that maps to it. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   &    |-  Q  =  U_ h  e.  R  ( O `  ( L `  h ) )   =>    |-  ( ph  ->  ( M `  Q )  =  R )
 
Theoremmapd1o 36937* The map defined by df-mapd 36914 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows  M satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 36874, mapdrval 36936, lclkrs 36828, lclkr 36822,...) to use  T  i^i  ~P C? TODO: maybe get rid of $d's for  g vs.  K U W,. propagate to mapdrn 36938 and any others. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
 
Theoremmapdrn 36938* Range of the map defined by df-mapd 36914. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ran  M  =  ( T  i^i  ~P C ) )
 
TheoremmapdunirnN 36939* Union of the range of the map defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  U. ran  M  =  C )
 
Theoremmapdrn2 36940 Range of the map defined by df-mapd 36914. TODO: this seems to be needed a lot in hdmaprnlem3eN 37150 etc. Would it be better to change df-mapd 36914 theorems to use  LSubSp `  C instead of  ran  M? (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  T  =  ( LSubSp `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ran  M  =  T )
 
Theoremmapdcnvcl 36941 Closure of the converse of the map defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   =>    |-  ( ph  ->  ( `' M `  X )  e.  S )
 
Theoremmapdcl 36942 Closure the value of the map defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   =>    |-  ( ph  ->  ( M `  X )  e.  ran  M )
 
Theoremmapdcnvid1N 36943 Converse of the value of the map defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   =>    |-  ( ph  ->  ( `' M `  ( M `
  X ) )  =  X )
 
Theoremmapdsord 36944 Strong ordering property of themap defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  (
 ( M `  X )  C.  ( M `  Y )  <->  X  C.  Y ) )
 
Theoremmapdcl2 36945 The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  T  =  ( LSubSp `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  S )   =>    |-  ( ph  ->  ( M `  R )  e.  T )
 
Theoremmapdcnvid2 36946 Value of the converse of the map defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   =>    |-  ( ph  ->  ( M `  ( `' M `  X ) )  =  X )
 
TheoremmapdcnvordN 36947 Ordering property of the converse of the map defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   &    |-  ( ph  ->  Y  e.  ran  M )   =>    |-  ( ph  ->  (
 ( `' M `  X )  C_  ( `' M `  Y )  <->  X  C_  Y ) )
 
Theoremmapdcnv11N 36948 The converse of the map defined by df-mapd 36914 is one-to-one. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   &    |-  ( ph  ->  Y  e.  ran  M )   =>    |-  ( ph  ->  (
 ( `' M `  X )  =  ( `' M `  Y )  <->  X  =  Y )
 )
 
Theoremmapdcv 36949 Covering property of the converse of the map defined by df-mapd 36914. (Contributed by NM, 14-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  C  =  (  <oLL  `
  U )   &    |-  D  =  ( (LCDual `  K ) `  W )   &    |-  E  =  (  <oLL  `
  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  ( X C Y  <->  ( M `  X ) E ( M `  Y ) ) )
 
Theoremmapdincl 36950 Closure of dual subspace intersection for the map defined by df-mapd 36914. (Contributed by NM, 12-Apr-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   &    |-  ( ph  ->  Y  e.  ran  M )   =>    |-  ( ph  ->  ( X  i^i  Y )  e. 
 ran  M )
 
Theoremmapdin 36951 Subspace intersection is preserved by the map defined by df-mapd 36914. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  ( M `  ( X  i^i  Y ) )  =  ( ( M `  X )  i^i  ( M `  Y ) ) )
 
Theoremmapdlsmcl 36952 Closure of dual subspace sum for the map defined by df-mapd 36914. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ran  M )   &    |-  ( ph  ->  Y  e.  ran  M )   =>    |-  ( ph  ->  ( X  .(+)  Y )  e. 
 ran  M )
 
Theoremmapdlsm 36953 Subspace sum is preserved by the map defined by df-mapd 36914. Part of property (e) in [Baer] p. 40. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( LSSum `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  Y  e.  S )   =>    |-  ( ph  ->  ( M `  ( X  .(+)  Y ) )  =  ( ( M `  X )  .+b  ( M `  Y ) ) )
 
Theoremmapd0 36954 Projectivity map of the zero subspace. Part of property (f) in [Baer] p. 40. TODO: does proof need to be this long for this simple fact? (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  O  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |- 
 .0.  =  ( 0g `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   =>    |-  ( ph  ->  ( M `  { O }
 )  =  {  .0.  } )
 
TheoremmapdcnvatN 36955 Atoms are preserved by the map defined by df-mapd 36914. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  A  =  (LSAtoms `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  B  =  (LSAtoms `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  B )   =>    |-  ( ph  ->  ( `' M `  Q )  e.  A )
 
Theoremmapdat 36956 Atoms are preserved by the map defined by df-mapd 36914. Property (g) in [Baer] p. 41. (Contributed by NM, 14-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  A  =  (LSAtoms `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  B  =  (LSAtoms `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  A )   =>    |-  ( ph  ->  ( M `  Q )  e.  B )
 
Theoremmapdspex 36957* The map of a span equals the dual span of some vector (functional). (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  B  =  ( Base `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  E. g  e.  B  ( M `  ( N `
  { X }
 ) )  =  ( J `  { g } ) )
 
Theoremmapdn0 36958 Transfer nonzero property from domain to range of projectivity mapd. (Contributed by NM, 12-Apr-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  .0.  =  ( 0g `  U )   &    |-  Z  =  ( 0g
 `  C )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  F  e.  ( D  \  { Z } ) )
 
Theoremmapdncol 36959 Transfer non-colinearity from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  G  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   =>    |-  ( ph  ->  ( J `  { F } )  =/=  ( J `  { G }
 ) )
 
Theoremmapdindp 36960 Transfer (part of) vector independence condition from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  G  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  E  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { Z }
 ) )  =  ( J `  { E } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   =>    |-  ( ph  ->  -.  F  e.  ( J `  { G ,  E } ) )
 
Theoremmapdpglem1 36961 Lemma for mapdpg 36995. Baer p. 44, last line: "(F(x-y))* =< (Fx)*+(Fy)*." (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   =>    |-  ( ph  ->  ( M `  ( N `
  { ( X 
 .-  Y ) }
 ) )  C_  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )
 
Theoremmapdpglem2 36962* Lemma for mapdpg 36995. Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d  t ph locally to avoid clashes with later substitutions into  ph.) (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   =>    |-  ( ph  ->  E. t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) ( M `  ( N `  { ( X  .-  Y ) }
 ) )  =  ( J `  { t } ) )
 
Theoremmapdpglem2a 36963* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   =>    |-  ( ph  ->  t  e.  F )
 
Theoremmapdpglem3 36964* Lemma for mapdpg 36995. Baer p. 45, line 3: "infer...the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d  g w z
ph locally to avoid clashes with later substitutions into  ph.) (Contributed by NM, 18-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   =>    |-  ( ph  ->  E. g  e.  B  E. z  e.  ( M `  ( N `  { Y } ) ) t  =  ( ( g 
 .x.  G ) R z ) )
 
Theoremmapdpglem4N 36965* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   =>    |-  ( ph  ->  ( X  .-  Y )  =/= 
 Q )
 
Theoremmapdpglem5N 36966* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   =>    |-  ( ph  ->  t  =/=  ( 0g `  C ) )
 
Theoremmapdpglem6 36967* Lemma for mapdpg 36995. Baer p. 45, line 4: "If g were 0, then t would be in (Fy)*..." (Contributed by NM, 18-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  g  =  .0.  )   =>    |-  ( ph  ->  t  e.  ( M `  ( N `  { Y }
 ) ) )
 
Theoremmapdpglem8 36968* Lemma for mapdpg 36995. Baer p. 45, line 4: "...so that (F(x-y))* =< (Fy)*. This would imply that F(x-y) =< F(y)..." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  g  =  .0.  )   =>    |-  ( ph  ->  ( N `  { ( X 
 .-  Y ) }
 )  C_  ( N ` 
 { Y } )
 )
 
Theoremmapdpglem9 36969* Lemma for mapdpg 36995. Baer p. 45, line 4: "...so that x would consequently belong to Fy." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  g  =  .0.  )   =>    |-  ( ph  ->  X  e.  ( N `  { Y } ) )
 
Theoremmapdpglem10 36970* Lemma for mapdpg 36995. Baer p. 45, line 6: "Hence Fx=Fy, an impossibility." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  g  =  .0.  )   =>    |-  ( ph  ->  ( N `  { X }
 )  =  ( N `
  { Y }
 ) )
 
Theoremmapdpglem11 36971* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   =>    |-  ( ph  ->  g  =/=  .0.  )
 
Theoremmapdpglem12 36972* Lemma for mapdpg 36995. TODO: Can some commonality with mapdpglem6 36967 through mapdpglem11 36971 be exploited? Also, some consolidation of small lemmas here could be done. (Contributed by NM, 18-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  ( ph  ->  z  =  ( 0g `  C ) )   =>    |-  ( ph  ->  t  e.  ( M `  ( N `  { X }
 ) ) )
 
Theoremmapdpglem13 36973* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  ( ph  ->  z  =  ( 0g `  C ) )   =>    |-  ( ph  ->  ( N `  { ( X 
 .-  Y ) }
 )  C_  ( N ` 
 { X } )
 )
 
Theoremmapdpglem14 36974* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  ( ph  ->  z  =  ( 0g `  C ) )   =>    |-  ( ph  ->  Y  e.  ( N `  { X } ) )
 
Theoremmapdpglem15 36975* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  ( ph  ->  z  =  ( 0g `  C ) )   =>    |-  ( ph  ->  ( N `  { X }
 )  =  ( N `
  { Y }
 ) )
 
Theoremmapdpglem16 36976* Lemma for mapdpg 36995. Baer p. 45, line 7: "Likewise we see that z =/= 0." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   =>    |-  ( ph  ->  z  =/=  ( 0g `  C ) )
 
Theoremmapdpglem17N 36977* Lemma for mapdpg 36995. Baer p. 45, line 7: "Hence we may form y' = g^-1 z." (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  E  =  ( ( ( invr `  A ) `  g )  .x.  z
 )   =>    |-  ( ph  ->  E  e.  F )
 
Theoremmapdpglem18 36978* Lemma for mapdpg 36995. Baer p. 45, line 7: "Then y =/= 0..." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  E  =  ( ( ( invr `  A ) `  g )  .x.  z
 )   =>    |-  ( ph  ->  E  =/=  ( 0g `  C ) )
 
Theoremmapdpglem19 36979* Lemma for mapdpg 36995. Baer p. 45, line 8: "...is in (Fy)*..." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  E  =  ( ( ( invr `  A ) `  g )  .x.  z
 )   =>    |-  ( ph  ->  E  e.  ( M `  ( N `  { Y }
 ) ) )
 
Theoremmapdpglem20 36980* Lemma for mapdpg 36995. Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  E  =  ( ( ( invr `  A ) `  g )  .x.  z
 )   =>    |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { E } ) )
 
Theoremmapdpglem21 36981* Lemma for mapdpg 36995. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  E  =  ( ( ( invr `  A ) `  g )  .x.  z
 )   =>    |-  ( ph  ->  (
 ( ( invr `  A ) `  g )  .x.  t )  =  ( G R E ) )
 
Theoremmapdpglem22 36982* Lemma for mapdpg 36995. Baer p. 45, line 9: "(F(x-y))* = ... = G(x'-y')." (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  E  =  ( ( ( invr `  A ) `  g )  .x.  z
 )   =>    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R E ) }
 ) )
 
Theoremmapdpglem23 36983* Lemma for mapdpg 36995. Baer p. 45, line 10: "and so y' meets all our requirements." Our  h is Baer's y'. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  .(+)  =  (
 LSSum `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  F  =  ( Base `  C )   &    |-  ( ph  ->  t  e.  (
 ( M `  ( N `  { X }
 ) )  .(+)  ( M `
  ( N `  { Y } ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  (
 Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  R  =  ( -g `  C )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  Q  =  ( 0g `  U )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { t }
 ) )   &    |-  .0.  =  ( 0g `  A )   &    |-  ( ph  ->  g  e.  B )   &    |-  ( ph  ->  z  e.  ( M `  ( N `  { Y } ) ) )   &    |-  ( ph  ->  t  =  ( ( g  .x.  G ) R z ) )   &    |-  ( ph  ->  X  =/=  Q )   &    |-  ( ph  ->  Y  =/=  Q )   &    |-  E  =  ( ( ( invr `  A ) `  g )  .x.  z
 )   =>    |-  ( ph  ->  E. h  e.  F  ( ( M `
  ( N `  { Y } ) )  =  ( J `  { h } )  /\  ( M `  ( N `
  { ( X 
 .-  Y ) }
 ) )  =  ( J `  { ( G R h ) }
 ) ) )
 
Theoremmapdpglem30a 36984 Lemma for mapdpg 36995. (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   =>    |-  ( ph  ->  G  =/=  ( 0g `  C ) )
 
Theoremmapdpglem30b 36985 Lemma for mapdpg 36995. (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   =>    |-  ( ph  ->  i  =/=  ( 0g `  C ) )
 
Theoremmapdpglem25 36986 Lemma for mapdpg 36995. Baer p. 45 line 12: "Then we have Gy' = Gy'' and G(x'-y') = G(x'-y'')." (Contributed by NM, 21-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   =>    |-  ( ph  ->  ( ( J `  { h }
 )  =  ( J `
  { i }
 )  /\  ( J ` 
 { ( G R h ) } )  =  ( J `  { ( G R i ) }
 ) ) )
 
Theoremmapdpglem26 36987* Lemma for mapdpg 36995. Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d  u ph locally to avoid clashes with later substitutions into 
ph.) (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  ( Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  A )   =>    |-  ( ph  ->  E. u  e.  ( B  \  { O } ) h  =  ( u  .x.  i
 ) )
 
Theoremmapdpglem27 36988* Lemma for mapdpg 36995. Baer p. 45 line 16: "v(x'-y'') = x'-y'" (with equality swapped). (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  ( Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  A )   =>    |-  ( ph  ->  E. v  e.  ( B  \  { O } ) ( G R h )  =  ( v  .x.  ( G R i ) ) )
 
Theoremmapdpglem29 36989* Lemma for mapdpg 36995. Baer p. 45 line 16: "But Gx' and Gy'' are distinct points and so x' and y'' are independent elements in B. (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  ( Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  A )   &    |-  ( ph  ->  v  e.  B )   &    |-  ( ph  ->  h  =  ( u  .x.  i ) )   &    |-  ( ph  ->  ( G R h )  =  (
 v  .x.  ( G R i ) ) )   =>    |-  ( ph  ->  ( J `  { G }
 )  =/=  ( J ` 
 { i } )
 )
 
Theoremmapdpglem28 36990* Lemma for mapdpg 36995. Baer p. 45 line 18: "vx'-vy'' = x'-uy''". (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  ( Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  A )   &    |-  ( ph  ->  v  e.  B )   &    |-  ( ph  ->  h  =  ( u  .x.  i ) )   &    |-  ( ph  ->  ( G R h )  =  (
 v  .x.  ( G R i ) ) )   =>    |-  ( ph  ->  (
 ( v  .x.  G ) R ( v  .x.  i ) )  =  ( G R ( u  .x.  i )
 ) )
 
Theoremmapdpglem30 36991* Lemma for mapdpg 36995. Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 36990, using lvecindp2 19139) that v = 1 and v = u...". TODO: would it be shorter to have only the  v  =  ( 1r `  A ) part and use mapdpglem28.u2 in mapdpglem31 36992? (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  ( Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  A )   &    |-  ( ph  ->  v  e.  B )   &    |-  ( ph  ->  h  =  ( u  .x.  i ) )   &    |-  ( ph  ->  ( G R h )  =  (
 v  .x.  ( G R i ) ) )   &    |-  ( ph  ->  u  e.  B )   =>    |-  ( ph  ->  ( v  =  ( 1r
 `  A )  /\  v  =  u )
 )
 
Theoremmapdpglem31 36992* Lemma for mapdpg 36995. Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) ) )   &    |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) )   &    |-  A  =  (Scalar `  U )   &    |-  B  =  ( Base `  A )   &    |-  .x.  =  ( .s `  C )   &    |-  O  =  ( 0g `  A )   &    |-  ( ph  ->  v  e.  B )   &    |-  ( ph  ->  h  =  ( u  .x.  i ) )   &    |-  ( ph  ->  ( G R h )  =  (
 v  .x.  ( G R i ) ) )   &    |-  ( ph  ->  u  e.  B )   =>    |-  ( ph  ->  h  =  i )
 
Theoremmapdpglem24 36993* Lemma for mapdpg 36995. Existence part - consolidate hypotheses in mapdpglem23 36983. (Contributed by NM, 21-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   =>    |-  ( ph  ->  E. h  e.  F  ( ( M `  ( N `  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) )
 
Theoremmapdpglem32 36994* Lemma for mapdpg 36995. Uniqueness part - consolidate hypotheses in mapdpglem31 36992. (Contributed by NM, 23-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   =>    |-  ( ( ph  /\  ( h  e.  F  /\  i  e.  F )  /\  ( ( ( M `  ( N `
  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) )  /\  (
 ( M `  ( N `  { Y }
 ) )  =  ( J `  { i } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R i ) }
 ) ) ) ) 
 ->  h  =  i
 )
 
Theoremmapdpg 36995* Part 1 of proof of the first fundamental theorem of projective geometry. Part (1) in [Baer] p. 44. Our notation corresponds to Baer's as follows:  M for *,  N `  { } for F(),  J `  { } for G(),  X for x,  G for x',  Y for y,  h for y'. TODO: Rename variables per mapdhval 37013. (Contributed by NM, 22-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )   =>    |-  ( ph  ->  E! h  e.  F  ( ( M `  ( N `  { Y }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( X  .-  Y ) } )
 )  =  ( J `
  { ( G R h ) }
 ) ) )
 
Theorembaerlem3lem1 36996 Lemma for baerlem3 37002. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .(+)  =  ( LSSum `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LVec )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  R  =  (Scalar `  W )   &    |-  B  =  (
 Base `  R )   &    |-  .+^  =  (
 +g  `  R )   &    |-  L  =  ( -g `  R )   &    |-  Q  =  ( 0g
 `  R )   &    |-  I  =  ( invg `  R )   &    |-  ( ph  ->  a  e.  B )   &    |-  ( ph  ->  b  e.  B )   &    |-  ( ph  ->  d  e.  B )   &    |-  ( ph  ->  e  e.  B )   &    |-  ( ph  ->  j  =  ( ( a  .x.  Y )  .+  ( b  .x.  Z ) ) )   &    |-  ( ph  ->  j  =  ( ( d  .x.  ( X  .-  Y ) ) 
 .+  ( e  .x.  ( X  .-  Z ) ) ) )   =>    |-  ( ph  ->  j  =  ( a  .x.  ( Y  .-  Z ) ) )
 
Theorembaerlem5alem1 36997 Lemma for baerlem5a 37003. (Contributed by NM, 13-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .(+)  =  ( LSSum `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LVec )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  R  =  (Scalar `  W )   &    |-  B  =  (
 Base `  R )   &    |-  .+^  =  (
 +g  `  R )   &    |-  L  =  ( -g `  R )   &    |-  Q  =  ( 0g
 `  R )   &    |-  I  =  ( invg `  R )   &    |-  ( ph  ->  a  e.  B )   &    |-  ( ph  ->  b  e.  B )   &    |-  ( ph  ->  d  e.  B )   &    |-  ( ph  ->  e  e.  B )   &    |-  ( ph  ->  j  =  ( ( a  .x.  ( X  .-  Y ) ) 
 .+  ( b  .x.  Z ) ) )   &    |-  ( ph  ->  j  =  ( ( d  .x.  ( X  .-  Z ) ) 
 .+  ( e  .x.  Y ) ) )   =>    |-  ( ph  ->  j  =  ( a  .x.  ( X  .-  ( Y 
 .+  Z ) ) ) )
 
Theorembaerlem5blem1 36998 Lemma for baerlem5b 37004. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .(+)  =  ( LSSum `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LVec )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  R  =  (Scalar `  W )   &    |-  B  =  (
 Base `  R )   &    |-  .+^  =  (
 +g  `  R )   &    |-  L  =  ( -g `  R )   &    |-  Q  =  ( 0g
 `  R )   &    |-  I  =  ( invg `  R )   &    |-  ( ph  ->  a  e.  B )   &    |-  ( ph  ->  b  e.  B )   &    |-  ( ph  ->  d  e.  B )   &    |-  ( ph  ->  e  e.  B )   &    |-  ( ph  ->  j  =  ( ( a  .x.  Y )  .+  ( b  .x.  Z ) ) )   &    |-  ( ph  ->  j  =  ( ( d  .x.  ( X  .-  ( Y  .+  Z ) ) ) 
 .+  ( e  .x.  X ) ) )   =>    |-  ( ph  ->  j  =  ( ( I `
  d )  .x.  ( Y  .+  Z ) ) )
 
Theorembaerlem3lem2 36999 Lemma for baerlem3 37002. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .(+)  =  ( LSSum `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LVec )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  R  =  (Scalar `  W )   &    |-  B  =  (
 Base `  R )   &    |-  .+^  =  (
 +g  `  R )   &    |-  L  =  ( -g `  R )   &    |-  Q  =  ( 0g
 `  R )   &    |-  I  =  ( invg `  R )   =>    |-  ( ph  ->  ( N `  { ( Y 
 .-  Z ) }
 )  =  ( ( ( N `  { Y } )  .(+)  ( N `
  { Z }
 ) )  i^i  (
 ( N `  { ( X  .-  Y ) }
 )  .(+)  ( N `  { ( X  .-  Z ) } )
 ) ) )
 
Theorembaerlem5alem2 37000 Lemma for baerlem5a 37003. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .(+)  =  ( LSSum `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LVec )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  .+  =  ( +g  `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  R  =  (Scalar `  W )   &    |-  B  =  (
 Base `  R )   &    |-  .+^  =  (
 +g  `  R )   &    |-  L  =  ( -g `  R )   &    |-  Q  =  ( 0g
 `  R )   &    |-  I  =  ( invg `  R )   =>    |-  ( ph  ->  ( N `  { ( X 
 .-  ( Y  .+  Z ) ) }
 )  =  ( ( ( N `  { ( X  .-  Y ) }
 )  .(+)  ( N `  { Z } ) )  i^i  ( ( N `
  { ( X 
 .-  Z ) }
 )  .(+)  ( N `  { Y } ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >