MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moaneu Structured version   Visualization version   Unicode version

Theorem moaneu 2533
Description: Nested "at most one" and uniqueness quantifiers. (Contributed by NM, 25-Jan-2006.) (Proof shortened by Wolf Lammen, 27-Dec-2018.)
Assertion
Ref Expression
moaneu  |-  E* x
( ph  /\  E! x ph )

Proof of Theorem moaneu
StepHypRef Expression
1 moanmo 2532 . 2  |-  E* x
( ph  /\  E* x ph )
2 eumo 2499 . . . 4  |-  ( E! x ph  ->  E* x ph )
32anim2i 593 . . 3  |-  ( (
ph  /\  E! x ph )  ->  ( ph  /\ 
E* x ph )
)
43moimi 2520 . 2  |-  ( E* x ( ph  /\  E* x ph )  ->  E* x ( ph  /\  E! x ph ) )
51, 4ax-mp 5 1  |-  E* x
( ph  /\  E! x ph )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   E!weu 2470   E*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator