Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neik0imk0p Structured version   Visualization version   Unicode version

Theorem neik0imk0p 38334
Description: Kuratowski's K0 axiom implies K0'. Neighborhood version. Also a proof the dual KA axiom imples KA' when considering the convergents. (Contributed by RP, 28-Jun-2021.)
Assertion
Ref Expression
neik0imk0p  |-  ( A. x  e.  B  B  e.  ( N `  x
)  ->  A. x  e.  B  ( N `  x )  =/=  (/) )

Proof of Theorem neik0imk0p
StepHypRef Expression
1 ne0i 3921 . 2  |-  ( B  e.  ( N `  x )  ->  ( N `  x )  =/=  (/) )
21ralimi 2952 1  |-  ( A. x  e.  B  B  e.  ( N `  x
)  ->  A. x  e.  B  ( N `  x )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator