Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk2imkb Structured version   Visualization version   Unicode version

Theorem ntrk2imkb 38335
Description: If an interior function is contracting, the interiors of disjoint sets are disjoint. Kuratowski's K2 axiom implies KB. Interior version. (Contributed by RP, 9-Jun-2021.)
Assertion
Ref Expression
ntrk2imkb  |-  ( A. s  e.  ~P  B
( I `  s
)  C_  s  ->  A. s  e.  ~P  B A. t  e.  ~P  B ( ( s  i^i  t )  =  (/)  ->  ( ( I `
 s )  i^i  ( I `  t
) )  =  (/) ) )
Distinct variable groups:    B, s,
t    I, s, t

Proof of Theorem ntrk2imkb
StepHypRef Expression
1 id 22 . . 3  |-  ( A. s  e.  ~P  B
( I `  s
)  C_  s  ->  A. s  e.  ~P  B
( I `  s
)  C_  s )
2 fveq2 6191 . . . . . 6  |-  ( s  =  t  ->  (
I `  s )  =  ( I `  t ) )
3 id 22 . . . . . 6  |-  ( s  =  t  ->  s  =  t )
42, 3sseq12d 3634 . . . . 5  |-  ( s  =  t  ->  (
( I `  s
)  C_  s  <->  ( I `  t )  C_  t
) )
54cbvralv 3171 . . . 4  |-  ( A. s  e.  ~P  B
( I `  s
)  C_  s  <->  A. t  e.  ~P  B ( I `
 t )  C_  t )
65biimpi 206 . . 3  |-  ( A. s  e.  ~P  B
( I `  s
)  C_  s  ->  A. t  e.  ~P  B
( I `  t
)  C_  t )
7 raaanv 4083 . . 3  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `
 s )  C_  s  /\  ( I `  t )  C_  t
)  <->  ( A. s  e.  ~P  B ( I `
 s )  C_  s  /\  A. t  e. 
~P  B ( I `
 t )  C_  t ) )
81, 6, 7sylanbrc 698 . 2  |-  ( A. s  e.  ~P  B
( I `  s
)  C_  s  ->  A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `
 s )  C_  s  /\  ( I `  t )  C_  t
) )
9 ss2in 3840 . . . . . . 7  |-  ( ( ( I `  s
)  C_  s  /\  ( I `  t
)  C_  t )  ->  ( ( I `  s )  i^i  (
I `  t )
)  C_  ( s  i^i  t ) )
109adantr 481 . . . . . 6  |-  ( ( ( ( I `  s )  C_  s  /\  ( I `  t
)  C_  t )  /\  ( s  i^i  t
)  =  (/) )  -> 
( ( I `  s )  i^i  (
I `  t )
)  C_  ( s  i^i  t ) )
11 simpr 477 . . . . . 6  |-  ( ( ( ( I `  s )  C_  s  /\  ( I `  t
)  C_  t )  /\  ( s  i^i  t
)  =  (/) )  -> 
( s  i^i  t
)  =  (/) )
1210, 11sseqtrd 3641 . . . . 5  |-  ( ( ( ( I `  s )  C_  s  /\  ( I `  t
)  C_  t )  /\  ( s  i^i  t
)  =  (/) )  -> 
( ( I `  s )  i^i  (
I `  t )
)  C_  (/) )
13 ss0 3974 . . . . 5  |-  ( ( ( I `  s
)  i^i  ( I `  t ) )  C_  (/) 
->  ( ( I `  s )  i^i  (
I `  t )
)  =  (/) )
1412, 13syl 17 . . . 4  |-  ( ( ( ( I `  s )  C_  s  /\  ( I `  t
)  C_  t )  /\  ( s  i^i  t
)  =  (/) )  -> 
( ( I `  s )  i^i  (
I `  t )
)  =  (/) )
1514ex 450 . . 3  |-  ( ( ( I `  s
)  C_  s  /\  ( I `  t
)  C_  t )  ->  ( ( s  i^i  t )  =  (/)  ->  ( ( I `  s )  i^i  (
I `  t )
)  =  (/) ) )
16152ralimi 2953 . 2  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( ( I `
 s )  C_  s  /\  ( I `  t )  C_  t
)  ->  A. s  e.  ~P  B A. t  e.  ~P  B ( ( s  i^i  t )  =  (/)  ->  ( ( I `  s )  i^i  ( I `  t ) )  =  (/) ) )
178, 16syl 17 1  |-  ( A. s  e.  ~P  B
( I `  s
)  C_  s  ->  A. s  e.  ~P  B A. t  e.  ~P  B ( ( s  i^i  t )  =  (/)  ->  ( ( I `
 s )  i^i  ( I `  t
) )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator