MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neq0f Structured version   Visualization version   Unicode version

Theorem neq0f 3926
Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 3930 requires only that  x not be free in, rather than not occur in,  A. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eq0f.1  |-  F/_ x A
Assertion
Ref Expression
neq0f  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )

Proof of Theorem neq0f
StepHypRef Expression
1 eq0f.1 . . . 4  |-  F/_ x A
21eq0f 3925 . . 3  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
32notbii 310 . 2  |-  ( -.  A  =  (/)  <->  -.  A. x  -.  x  e.  A
)
4 df-ex 1705 . 2  |-  ( E. x  x  e.  A  <->  -. 
A. x  -.  x  e.  A )
53, 4bitr4i 267 1  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   F/_wnfc 2751   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  n0f  3927  neq0  3930
  Copyright terms: Public domain W3C validator