HomeHome Metamath Proof Explorer
Theorem List (p. 40 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 3901-4000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdifrab 3901 Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
 |-  ( { x  e.  A  |  ph }  \  { x  e.  A  |  ps } )  =  { x  e.  A  |  ( ph  /\  -.  ps ) }
 
Theoremdfrab3 3902* Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
 |- 
 { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph } )
 
Theoremdfrab2 3903* Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.)
 |- 
 { x  e.  A  |  ph }  =  ( { x  |  ph }  i^i  A )
 
Theoremnotrab 3904* Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( A  \  { x  e.  A  |  ph
 } )  =  { x  e.  A  |  -.  ph }
 
Theoremdfrab3ss 3905* Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
 |-  ( A  C_  B  ->  { x  e.  A  |  ph }  =  ( A  i^i  { x  e.  B  |  ph } )
 )
 
Theoremrabun2 3906 Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
 |- 
 { x  e.  ( A  u.  B )  | 
 ph }  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph
 } )
 
2.1.13.7  Restricted uniqueness with difference, union, and intersection
 
Theoremreuss2 3907* Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
 |-  ( ( ( A 
 C_  B  /\  A. x  e.  A  ( ph  ->  ps ) )  /\  ( E. x  e.  A  ph 
 /\  E! x  e.  B  ps ) )  ->  E! x  e.  A  ph )
 
Theoremreuss 3908* Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  E! x  e.  A  ph )
 
Theoremreuun1 3909* Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
 |-  ( ( E. x  e.  A  ph  /\  E! x  e.  ( A  u.  B ) ( ph  \/  ps ) )  ->  E! x  e.  A  ph )
 
Theoremreuun2 3910* Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
 |-  ( -.  E. x  e.  B  ph  ->  ( E! x  e.  ( A  u.  B ) ph  <->  E! x  e.  A  ph )
 )
 
Theoremreupick 3911* Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.)
 |-  ( ( ( A 
 C_  B  /\  ( E. x  e.  A  ph 
 /\  E! x  e.  B  ph ) )  /\  ph )  ->  ( x  e.  A  <->  x  e.  B ) )
 
Theoremreupick3 3912* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
 |-  ( ( E! x  e.  A  ph  /\  E. x  e.  A  ( ph  /\  ps )  /\  x  e.  A )  ->  ( ph  ->  ps ) )
 
Theoremreupick2 3913* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  ( ( ( A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  ps  /\ 
 E! x  e.  A  ph )  /\  x  e.  A )  ->  ( ph 
 <->  ps ) )
 
Theoremeuelss 3914* Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020.)
 |-  ( ( A  C_  B  /\  E. x  x  e.  A  /\  E! x  x  e.  B )  ->  E! x  x  e.  A )
 
2.1.14  The empty set
 
Syntaxc0 3915 Extend class notation to include the empty set.
 class  (/)
 
Definitiondf-nul 3916 Define the empty set. Special case of Exercise 4.10(o) of [Mendelson] p. 231. For a more traditional definition, but requiring a dummy variable, see dfnul2 3917. (Contributed by NM, 17-Jun-1993.)
 |-  (/)  =  ( _V  \  _V )
 
Theoremdfnul2 3917 Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
 |-  (/)  =  { x  |  -.  x  =  x }
 
Theoremdfnul3 3918 Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
 |-  (/)  =  { x  e.  A  |  -.  x  e.  A }
 
Theoremnoel 3919 The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
 |- 
 -.  A  e.  (/)
 
Theoremn0i 3920 If a set has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.)
 |-  ( B  e.  A  ->  -.  A  =  (/) )
 
Theoremne0i 3921 If a set has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.)
 |-  ( B  e.  A  ->  A  =/=  (/) )
 
Theoremn0ii 3922 If a set has elements, then it is not empty. Inference associated with n0i 3920. (Contributed by BJ, 15-Jul-2021.)
 |-  A  e.  B   =>    |-  -.  B  =  (/)
 
Theoremne0ii 3923 If a set has elements, then it is not empty. Inference associated with ne0i 3921. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  A  e.  B   =>    |-  B  =/=  (/)
 
Theoremvn0 3924 The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
 |- 
 _V  =/=  (/)
 
Theoremeq0f 3925 The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.)
 |-  F/_ x A   =>    |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
 
Theoremneq0f 3926 A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 3930 requires only that  x not be free in, rather than not occur in,  A. (Contributed by BJ, 15-Jul-2021.)
 |-  F/_ x A   =>    |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
 
Theoremn0f 3927 A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 3931 requires only that  x not be free in, rather than not occur in,  A. (Contributed by NM, 17-Oct-2003.)
 |-  F/_ x A   =>    |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
 
Theoremn0fOLD 3928 Obsolete proof of n0f 3927 as of 15-Jul-2021. (Contributed by NM, 17-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/_ x A   =>    |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
 
Theoremeq0 3929* The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.)
 |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
 
Theoremneq0 3930* A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.)
 |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
 
Theoremn0 3931* A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 29-Sep-2006.)
 |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
 
Theoremnel0 3932* From the general negation of membership in  A, infer that  A is the empty set. (Contributed by BJ, 6-Oct-2018.)
 |- 
 -.  x  e.  A   =>    |-  A  =  (/)
 
Theoremreximdva0 3933* Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  ps )   =>    |-  (
 ( ph  /\  A  =/=  (/) )  ->  E. x  e.  A  ps )
 
Theoremrspn0 3934* Specialization for restricted generalization with a nonempty set. (Contributed by Alexander van der Vekens, 6-Sep-2018.)
 |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ph 
 ->  ph ) )
 
Theoremn0rex 3935* There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020.)
 |-  ( A  =/=  (/)  ->  E. x  e.  A  x  e.  A )
 
Theoremssn0rex 3936* There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020.)
 |-  ( ( A  C_  B  /\  A  =/=  (/) )  ->  E. x  e.  B  x  e.  A )
 
Theoremn0moeu 3937* A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.)
 |-  ( A  =/=  (/)  ->  ( E* x  x  e.  A 
 <->  E! x  x  e.  A ) )
 
Theoremrex0 3938 Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
 |- 
 -.  E. x  e.  (/)  ph
 
Theorem0el 3939* Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
 |-  ( (/)  e.  A  <->  E. x  e.  A  A. y  -.  y  e.  x )
 
Theoremn0el 3940* Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.)
 |-  ( -.  (/)  e.  A  <->  A. x  e.  A  E. u  u  e.  x )
 
Theoremeqeuel 3941* A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.)
 |-  ( ( A  =/=  (/)  /\  A. x A. y
 ( ( x  e.  A  /\  y  e.  A )  ->  x  =  y ) )  ->  E! x  x  e.  A )
 
Theoremssdif0 3942 Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  C_  B  <->  ( A  \  B )  =  (/) )
 
Theoremdifn0 3943 If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
 |-  ( ( A  \  B )  =/=  (/)  ->  A  =/=  B )
 
Theorempssdifn0 3944 A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
 |-  ( ( A  C_  B  /\  A  =/=  B )  ->  ( B  \  A )  =/=  (/) )
 
Theorempssdif 3945 A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.)
 |-  ( A  C.  B  ->  ( B  \  A )  =/=  (/) )
 
Theoremdifin0ss 3946 Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
 |-  ( ( ( A 
 \  B )  i^i 
 C )  =  (/)  ->  ( C  C_  A  ->  C 
 C_  B ) )
 
Theoreminssdif0 3947 Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
 |-  ( ( A  i^i  B )  C_  C  <->  ( A  i^i  ( B  \  C ) )  =  (/) )
 
Theoremdifid 3948 The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.)
 |-  ( A  \  A )  =  (/)
 
TheoremdifidALT 3949 Alternate proof of difid 3948. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  \  A )  =  (/)
 
Theoremdif0 3950 The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  \  (/) )  =  A
 
Theoremab0 3951 The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 3954 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2795). (Contributed by BJ, 19-Mar-2021.)
 |-  ( { x  |  ph
 }  =  (/)  <->  A. x  -.  ph )
 
Theoremdfnf5 3952 Characterization of non-freeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.)
 |-  ( F/ x ph  <->  ( { x  |  ph }  =  (/) 
 \/  { x  |  ph }  =  _V ) )
 
Theoremab0orv 3953* The class builder of a wff not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.)
 |-  ( { x  |  ph
 }  =  (/)  \/  { x  |  ph }  =  _V )
 
Theoremabn0 3954 Nonempty class abstraction. See also ab0 3951. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
 |-  ( { x  |  ph
 }  =/=  (/)  <->  E. x ph )
 
Theoremrab0 3955 Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
 |- 
 { x  e.  (/)  |  ph }  =  (/)
 
Theoremrab0OLD 3956 Obsolete proof of rab0 3955 as of 14-Jul-2021. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 { x  e.  (/)  |  ph }  =  (/)
 
Theoremrabeq0 3957 Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.)
 |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )
 
Theoremrabn0 3958 Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.)
 |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  E. x  e.  A  ph )
 
Theoremrabn0OLD 3959 Obsolete proof of rabn0 3958 as of 16-Jul-2021. (Contributed by NM, 29-Aug-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  E. x  e.  A  ph )
 
Theoremrabeq0OLD 3960 Obsolete proof of rabeq0 3957 as of 16-Jul-2021. (Contributed by Jeff Madsen, 7-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )
 
Theoremrabxm 3961* Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
 |-  A  =  ( { x  e.  A  |  ph
 }  u.  { x  e.  A  |  -.  ph } )
 
Theoremrabnc 3962* Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
 |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  -.  ph } )  =  (/)
 
Theoremelneldisj 3963* The set of elements  s determining classes  C (which may depend on  s) containing a special element and the set of elements  s determining classes  C not containing the special element are disjoint. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.)
 |-  E  =  { s  e.  A  |  B  e.  C }   &    |-  N  =  {
 s  e.  A  |  B  e/  C }   =>    |-  ( E  i^i  N )  =  (/)
 
Theoremelnelun 3964* The union of the set of elements  s determining classes  C (which may depend on  s) containing a special element and the set of elements  s determining classes  C not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.)
 |-  E  =  { s  e.  A  |  B  e.  C }   &    |-  N  =  {
 s  e.  A  |  B  e/  C }   =>    |-  ( E  u.  N )  =  A
 
TheoremelneldisjOLD 3965* Obsolete version of elneldisj 3963 as of 17-Dec-2021. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  E  =  { s  e.  A  |  B  e.  s }   &    |-  N  =  {
 s  e.  A  |  B  e/  s }   =>    |-  ( E  i^i  N )  =  (/)
 
TheoremelnelunOLD 3966* Obsolete version of elnelun 3964 as of 17-Dec-2021. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  E  =  { s  e.  A  |  B  e.  s }   &    |-  N  =  {
 s  e.  A  |  B  e/  s }   =>    |-  ( E  u.  N )  =  A
 
Theoremun0 3967 The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 15-Jul-1993.)
 |-  ( A  u.  (/) )  =  A
 
Theoremin0 3968 The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.)
 |-  ( A  i^i  (/) )  =  (/)
 
Theorem0in 3969 The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( (/)  i^i  A )  =  (/)
 
Theoreminv1 3970 The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
 |-  ( A  i^i  _V )  =  A
 
Theoremunv 3971 The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
 |-  ( A  u.  _V )  =  _V
 
Theorem0ss 3972 The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.)
 |-  (/)  C_  A
 
Theoremss0b 3973 Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
 |-  ( A  C_  (/)  <->  A  =  (/) )
 
Theoremss0 3974 Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
 |-  ( A  C_  (/)  ->  A  =  (/) )
 
Theoremsseq0 3975 A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
 
Theoremssn0 3976 A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
 |-  ( ( A  C_  B  /\  A  =/=  (/) )  ->  B  =/=  (/) )
 
Theorem0dif 3977 The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
 |-  ( (/)  \  A )  =  (/)
 
Theoremabf 3978 A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.)
 |- 
 -.  ph   =>    |- 
 { x  |  ph }  =  (/)
 
Theoremeq0rdv 3979* Deduction rule for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
 |-  ( ph  ->  -.  x  e.  A )   =>    |-  ( ph  ->  A  =  (/) )
 
Theoremcsbprc 3980 The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
 |-  ( -.  A  e.  _V 
 ->  [_ A  /  x ]_ B  =  (/) )
 
TheoremcsbprcOLD 3981 Obsolete proof of csbprc 3980 as of 27-Aug-2021. (Contributed by NM, 17-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( -.  A  e.  _V 
 ->  [_ A  /  x ]_ B  =  (/) )
 
Theoremcsb0 3982 The proper substitution of a class into the empty set is empty. (Contributed by NM, 18-Aug-2018.)
 |-  [_ A  /  x ]_ (/)  =  (/)
 
Theoremsbcel12 3983 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
 |-  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )
 
Theoremsbceqg 3984 Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
 
Theoremsbcnel12g 3985 Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e/  C  <->  [_ A  /  x ]_ B  e/  [_ A  /  x ]_ C ) )
 
Theoremsbcne12 3986 Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.)
 |-  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C )
 
Theoremsbcel1g 3987* Move proper substitution in and out of a membership relation. Note that the scope of  [. A  /  x ]. is the wff  B  e.  C, whereas the scope of  [_ A  /  x ]_ is the class  B. (Contributed by NM, 10-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  C )
 )
 
Theoremsbceq1g 3988* Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
 )
 
Theoremsbcel2 3989* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
 |-  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C )
 
Theoremsbceq2g 3990* Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  B  =  [_ A  /  x ]_ C ) )
 
Theoremcsbeq2d 3991 Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |- 
 F/ x ph   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
 
Theoremcsbeq2dv 3992* Formula-building deduction rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
 
Theoremcsbeq2i 3993 Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  B  =  C   =>    |-  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C
 
Theoremcsbcom 3994* Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
 |-  [_ A  /  x ]_
 [_ B  /  y ]_ C  =  [_ B  /  y ]_ [_ A  /  x ]_ C
 
Theoremsbcnestgf 3995 Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
 |-  ( ( A  e.  V  /\  A. y F/ x ph )  ->  ( [. A  /  x ].
 [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
 
Theoremcsbnestgf 3996 Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
 |-  ( ( A  e.  V  /\  A. y F/_ x C )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_
 [_ A  /  x ]_ B  /  y ]_ C )
 
Theoremsbcnestg 3997* Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
 
Theoremcsbnestg 3998* Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 [_ B  /  y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C )
 
Theoremsbcco3g 3999* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
 |-  ( x  =  A  ->  B  =  C )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
 
Theoremcsbco3g 4000* Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
 |-  ( x  =  A  ->  B  =  C )   =>    |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 [_ B  /  y ]_ D  =  [_ C  /  y ]_ D )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >