MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvb Structured version   Visualization version   Unicode version

Theorem nfcvb 4898
Description: The "distinctor" expression 
-.  A. x x  =  y, stating that  x and  y are not the same variable, can be written in terms of  F/ in the obvious way. This theorem is not true in a one-element domain, because then  F/_ x y and  A. x x  =  y will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
nfcvb  |-  ( F/_ x y  <->  -.  A. x  x  =  y )

Proof of Theorem nfcvb
StepHypRef Expression
1 nfnid 4897 . . . 4  |-  -.  F/_ y y
2 eqidd 2623 . . . . 5  |-  ( A. x  x  =  y  ->  y  =  y )
32drnfc1 2782 . . . 4  |-  ( A. x  x  =  y  ->  ( F/_ x y  <->  F/_ y y ) )
41, 3mtbiri 317 . . 3  |-  ( A. x  x  =  y  ->  -.  F/_ x y )
54con2i 134 . 2  |-  ( F/_ x y  ->  -.  A. x  x  =  y )
6 nfcvf 2788 . 2  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
75, 6impbii 199 1  |-  ( F/_ x y  <->  -.  A. x  x  =  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   A.wal 1481   F/_wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator