MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nftht Structured version   Visualization version   Unicode version

Theorem nftht 1718
Description: Closed form of nfth 1727. (Contributed by Wolf Lammen, 19-Aug-2018.) (Proof shortened by BJ, 16-Sep-2021.)
Assertion
Ref Expression
nftht  |-  ( A. x ph  ->  F/ x ph )

Proof of Theorem nftht
StepHypRef Expression
1 ax-1 6 . 2  |-  ( A. x ph  ->  ( E. x ph  ->  A. x ph ) )
2 df-nf 1710 . 2  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
31, 2sylibr 224 1  |-  ( A. x ph  ->  F/ x ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-nf 1710
This theorem is referenced by:  nfth  1727  nfim1  2067  wl-nfeqfb  33323
  Copyright terms: Public domain W3C validator