| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nftht | Structured version Visualization version GIF version | ||
| Description: Closed form of nfth 1727. (Contributed by Wolf Lammen, 19-Aug-2018.) (Proof shortened by BJ, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| nftht | ⊢ (∀𝑥𝜑 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | df-nf 1710 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | sylibr 224 | 1 ⊢ (∀𝑥𝜑 → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-nf 1710 |
| This theorem is referenced by: nfth 1727 nfim1 2067 wl-nfeqfb 33323 |
| Copyright terms: Public domain | W3C validator |