Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  not12an2impnot1 Structured version   Visualization version   Unicode version

Theorem not12an2impnot1 38784
Description: If a double conjunction is false and the second conjunct is true, then the first conjunct is false. http://us.metamath.org/other/completeusersproof/not12an2impnot1vd.html is the Virtual Deduction proof verified by automatically transforming it into the Metamath proof of not12an2impnot1 38784 using completeusersproof, which is verified by the Metamath program. http://us.metamath.org/other/completeusersproof/not12an2impnot1ro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.)
Assertion
Ref Expression
not12an2impnot1  |-  ( ( -.  ( ph  /\  ps )  /\  ps )  ->  -.  ph )

Proof of Theorem not12an2impnot1
StepHypRef Expression
1 pm3.21 464 . . 3  |-  ( ps 
->  ( ph  ->  ( ph  /\  ps ) ) )
21con3rr3 151 . 2  |-  ( -.  ( ph  /\  ps )  ->  ( ps  ->  -. 
ph ) )
32imp 445 1  |-  ( ( -.  ( ph  /\  ps )  /\  ps )  ->  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  sineq0ALT  39173
  Copyright terms: Public domain W3C validator