Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nssrex Structured version   Visualization version   Unicode version

Theorem nssrex 39260
Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
nssrex  |-  ( -.  A  C_  B  <->  E. x  e.  A  -.  x  e.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem nssrex
StepHypRef Expression
1 nss 3663 . 2  |-  ( -.  A  C_  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
2 df-rex 2918 . 2  |-  ( E. x  e.  A  -.  x  e.  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
31, 2bitr4i 267 1  |-  ( -.  A  C_  B  <->  E. x  e.  A  -.  x  e.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384   E.wex 1704    e. wcel 1990   E.wrex 2913    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rex 2918  df-in 3581  df-ss 3588
This theorem is referenced by:  mapssbi  39405
  Copyright terms: Public domain W3C validator