| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprabbid | Structured version Visualization version Unicode version | ||
| Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| oprabbid.1 |
|
| oprabbid.2 |
|
| oprabbid.3 |
|
| oprabbid.4 |
|
| Ref | Expression |
|---|---|
| oprabbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabbid.1 |
. . . 4
| |
| 2 | oprabbid.2 |
. . . . 5
| |
| 3 | oprabbid.3 |
. . . . . 6
| |
| 4 | oprabbid.4 |
. . . . . . 7
| |
| 5 | 4 | anbi2d 740 |
. . . . . 6
|
| 6 | 3, 5 | exbid 2091 |
. . . . 5
|
| 7 | 2, 6 | exbid 2091 |
. . . 4
|
| 8 | 1, 7 | exbid 2091 |
. . 3
|
| 9 | 8 | abbidv 2741 |
. 2
|
| 10 | df-oprab 6654 |
. 2
| |
| 11 | df-oprab 6654 |
. 2
| |
| 12 | 9, 10, 11 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-oprab 6654 |
| This theorem is referenced by: oprabbidv 6709 mpt2eq123 6714 |
| Copyright terms: Public domain | W3C validator |