| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpt2eq123 | Structured version Visualization version Unicode version | ||
| Description: An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| mpt2eq123 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | nfra1 2941 |
. . . 4
| |
| 3 | 1, 2 | nfan 1828 |
. . 3
|
| 4 | nfv 1843 |
. . . 4
| |
| 5 | nfcv 2764 |
. . . . 5
| |
| 6 | nfv 1843 |
. . . . . 6
| |
| 7 | nfra1 2941 |
. . . . . 6
| |
| 8 | 6, 7 | nfan 1828 |
. . . . 5
|
| 9 | 5, 8 | nfral 2945 |
. . . 4
|
| 10 | 4, 9 | nfan 1828 |
. . 3
|
| 11 | nfv 1843 |
. . 3
| |
| 12 | rsp 2929 |
. . . . . . 7
| |
| 13 | rsp 2929 |
. . . . . . . . . 10
| |
| 14 | eqeq2 2633 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl6 35 |
. . . . . . . . 9
|
| 16 | 15 | pm5.32d 671 |
. . . . . . . 8
|
| 17 | eleq2 2690 |
. . . . . . . . 9
| |
| 18 | 17 | anbi1d 741 |
. . . . . . . 8
|
| 19 | 16, 18 | sylan9bbr 737 |
. . . . . . 7
|
| 20 | 12, 19 | syl6 35 |
. . . . . 6
|
| 21 | 20 | pm5.32d 671 |
. . . . 5
|
| 22 | eleq2 2690 |
. . . . . 6
| |
| 23 | 22 | anbi1d 741 |
. . . . 5
|
| 24 | 21, 23 | sylan9bbr 737 |
. . . 4
|
| 25 | anass 681 |
. . . 4
| |
| 26 | anass 681 |
. . . 4
| |
| 27 | 24, 25, 26 | 3bitr4g 303 |
. . 3
|
| 28 | 3, 10, 11, 27 | oprabbid 6708 |
. 2
|
| 29 | df-mpt2 6655 |
. 2
| |
| 30 | df-mpt2 6655 |
. 2
| |
| 31 | 28, 29, 30 | 3eqtr4g 2681 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: mpt2eq12 6715 mapxpen 8126 pmatcollpw2lem 20582 xkoptsub 21457 xkocnv 21617 matunitlindflem1 33405 |
| Copyright terms: Public domain | W3C validator |